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Abstract—In this paper, a generalization of the Misspecified
Cramér-Rao Bound (MCRB) and of the Constrained MCRB
(CMCRB) to complex parameter vectors is presented. Our
derivation aims at providing lower bounds on the Mean Square
Error (MSE) for both circular and non-circular, MS-unbiased,
mismatched estimators. A simple toy example is also presented
to clarify the theoretical findings.

I. INTRODUCTION

Recent papers have discussed the possibility to establish a
lower bound on the error covariance matrix of an estimator in
the presence of model misspecification (see e.g. [1], [2], [3]).
The model misspecification problem arises when the true data
model (or the true data probability density function, pdf) is
different from the one assumed to derive an estimator of the
parameters of interest. A lower bound under misspecification,
named Misspecified Cramér-Rao Bound (MCRB), has been
firstly derived by Vuong in his seminal working paper [4] for
real parameter vectors. More recently, a different proof of the
same MCRB has been proposed by Richmond and Horowitz
in [1], where an extension of this bound to complex parameter
vectors has been also provided and applied to the DOA
estimation problem. In [5], the MCRB for the joint DOA-DOD
estimation in MIMO radars has been obtained by stacking the
real and the imaginary parts of the complex parameters. In
this paper, we provide a general expression of the MCRB for
complex unconstrained (Theorem 1) and constrained (Theorem
2) parameter vectors that can be applied to both circular and
non-circular (i.e. with a non-vanishing pseudo-covariance),
MS-unbiased, mismatched estimators. Our strategy to derived
the complex MCRB follows the one adopted in [6] and [7] for
the complex unconstrained and constrained CRB. Specifically,
we will not derive any new covariance inequality directly in
the complex field (as done e.g. in [8] and [9] for the classical
CRB) but, relying on the interrelated representations of vectors
in CV, C2N and R2V, we will transform the real MCRB in
its complex form. Although less general than the framework
detailed in [9], our approach avoids technical complications
implied by reproducing the proofs given in [4] and [3] for
real parameters directly on the complex field.

On account of the limited space available, we assume that
the reader is already aware of the main findings about the
misspecified estimation framework detailed in [1], [2], [3],
[4] and in the references therein. Moreover, we also assume
that the reader is familiar with the basic notions on complex
random variables, complex pdfs, complex expectations ( [10],
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[11], [12], [13], [14], [15]) and with the so-called Wirtinger
or CR-calculus ( [16], [17], [18], [19], [20] and the references
therein).

Notation: Throughout this paper, italics indicates scalar
quantities (a), lower case and upper case boldface indicate
column vectors (a) and matrices (A) respectively. * indicates
the complex conjugation. The superscripts 7" and H indicates
the transpose and the Hermitian operators, then A# = (A*)7.
For two matrices A and B, A > B means that A — B is
positive semi-definite.

II. PRELIMINARIES

In order to make this paper as self-contained as possible, in
this section, we provide a brief summary of the main defini-
tions, notations and operators that will play a fundamental role
in the derivation of the MCRB for complex parameter vectors.
Our main references here are the book [16] and the excellent
tutorial paper [17]. We focus our attention on the class of scalar
real valued functions of complex variables. In particular, let
v =x + jy € CV be a complex vector and let f: CNY — R
be a real valued function. The class of real valued functions
is extensively used in signal processing applications. For
example, the likelihood functions or the error loss functions
are members of this class. Except for the constant function,
a real valued function is not holomorphic, and consequently
the classical complex functional analysis cannot be exploited (
[16], [17]). A way to overcome this limitation is to represent a
real valued non-holomorphic function f (v) as function of the
real and the imaginary parts of v, i.e. f(x,y) or alternatively
as function of both v and its complex conjugate v*, i.e.
f(v,v*). To this end, we will make extensive use of the
following two mappings ( [6], [9], [16] and [17]). We define
as the real representation of v the mapping:

T CN S RN

- T T\ )
vev=(xLy),

and as complex augmented representation of v the mapping:

N —cceN o

visv= (vl v,

The mapping (1) represents the natural set isomorphism
between CV and R?" while (2) defines an invertible mapping
between CV and C ¢ C?V. It is worth noticing that C is not
a linear subspace of C2V | Indeed, C can be viewed as vector
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space of dimension 2N on the real field [17]. In particular,
there exists a linear and invertible transformation 1" such that:

T:R¥™ 5 ¢ccc?
{/HYZT({I)éTgN\Nf

J(3)

where I is the identity matrix of dimension N and Tsy is
a unitary matrix up to a scalar factor of 2, i.e. T4\ = 2T, .
Unless otherwise stated, the size of T is 2/V, so the related
subscript will be dropped for notation simplicity. We refer to
[10] and [17] for a complete list of properties of T. Using
the relations (1), (2) and (3), with an abuse of notation, a real
valued function f(v) will be interchangeably represented as
fx,y), f(¥), f(v,v*) or f(v). Actually, using the relation
in (1), a real valued functions can be always represented as
f : R?2N — R, then the classical real analysis could be
applied straight. However, to work directly within the complex
variables framework will preserve a more clear insight about
the problem at hand and will guarantee a simpler algebraic
manipulations of the equations. The rest of this section is de-
voted to define the complex gradient and the complex Hessian
matrix of f. We firstly introduce the two row operators, i.e.
the Wirtinger derivatives, as:

f (v,v*) ]-<8f@@y)j8f@sy)) -

3)

where T is explicitly defined as:

- Iy Iy
v="Toyv= .

ov 2 ox y
ofv,v') 1 (0f(xy)  .9f(xy)
ov: 2 ( ox Y dy ) ©

where v and v* have to be formally considered as two different
variables. In [17], these operators are called cogradient opera-
tor and conjugate cogradient operator, respectively. Moreover,
in [17] it is shown that the gradient, i.e. the vector in the
tangent space defining the direction of the maximum rate of
change of the function f, is given by:

* H * T
Vof & <8f (5"," )) - (af g;’*v )> (7)

where the second equality follows from the assumption that f
is a real valued function. As for the standard real multivariate
case, a necessary and sufficient condition for the real valued
function f(v) to have a stationary point in v is that the gra-
dient in (7) vanishes at vg, i.e.Vy, f = 0. Before introducing
the Hessian matrix, we define the row differential operators:

0/0v 2 ((0/ox 0)dy )= (VI VI )AVIf (8
a/ov 2 (d/ov d/ov* ) 9)

named real cogradient and complex augmented cogradient,
respectively. The operator in (8) acts on f, taken as a real
function of real variables, as the classical (real) cogradient
operator. As detailed in [17], the real cogradient in (8) can be
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transformed in the complex augmented cogradient in (9) and
vice versa, by means of the invertible transformation T in (3):

/%) _ 0f(v)
ov ov

At this point, we can introduce the (real) Hessian matrix of
f in the classical real sense as:

9 (N 0 (arONT oo
Hw—m< 5% ) _av<) = VIV.f. (1)

VIf= T. (10)

ov
It is immediate to verify that a complex representation of the

Hessian matrix can be obtained by applying the transformation
in (10) as [17]:

va Hv*‘v
Hgy = THHﬂT =TH ( Ho.,. Hy... ) T, (12)
where
o (0 9\
Hy = o (YWY _ongpomi, a3
ov ov
H
Hv*v _ a af(v) _ vz:vvf _ Hik,v*; (14)
ov* \ Ov
and HIL = H:. .. Finally, it can be shown that the inverse

transformation of eq. (12) is Hyy, = 4 1 THg;TH.

III. THE COMPLEX UNCONSTRAINED MCRB

Let z = x + jy € CV be a complex random vector
representing the outcome of a random experiment whose true
but possibly unknown pdf is given by pz(z). Following the
classic misspecified framework, we assume that z is sampled
from a pdf f(z;60) parameterized by a complex unknown
deterministic parameter vector @ = o + j3 € © C C¢ . As
usual, f7(z;0) can possibly be different from py(z) for any
6 € ©. Moreover, let 8 2 6(z) = a(z) + jB(z) € C? be the
complex valued estimator of @ derived under the misspecified
pdf fz(z;0). The strategy that we will follow to derive a
complex MCRB is similar to the one adopted in [6] for the
CRB. In particular, we exploit the mappings in (1), (2) and
(3) to represent in a complex form the MCRB derived in
the classical real framework, by keeping unchanged the main
proof about the real MCRB.

In the rest of this section, we assume that:

Al  Given the relation (1), pz(z) and fz(z;0) admit an
alternative, yet equivalent, representation as pyz(z)
and fz(z;0).

A2 The pdfs pz(z) and fz(z; @) belong to two (gen-
erally different) families (or models) P and F .
Moreover, we assume that F is regular with respect
to P (see [2], [4]).

A3 The function E,{lnf;(z;0)|6 € © C R} has
a unique maximum on © in an interior point 6,.
Moreover, the matrix

A, 2 B {VE Ve n 2300} (1)

is non-singular at 6.
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A4 0 is a misspecified (MS)-unbiased ( [2], [4]) estima-
tor, i.e. E,{08} = [6(2)pz(z)dz = 6y, where the
expectation operator is defined as in [13].

As discussed in [1], [2] and [4], éo can be seen as the
real representation of the pseudo-true parameter vector, i.e.
the point that minimizes the Kullback-Leibler (KL) divergence

between pz(z) and fz(z;0):

6o £ argmin {D (pz || fo)} = argmin {D (pz || fo)} . (16)
0co 0cO

where D (pz || fo) = B, {In(pz(2)/ f2(2;0))}.
Under Assumptions A1-A4, Theorem 4.1 in [4] (or Theorem
1 in [2]) can be recast as follow:

Lemma 1. Let 6 be the real representation of an MS-unbiased
estimator 0 derived under the misspecified model F from the
data vector z. Then for every pz(z) in P:

C(8,6,) > A;'B; A;' £ MCRB(d),  (17)

where ~ ~ ~ .

c@.00 25, {@-0)0-0) | a9
is the (real) error covariance matrix of 0, Aéo is defined as
in (15) and:

By, 2 B, {véo In /(2 60) V5 In f2(%; éo)}

Proof: Since all the quantities are given in terms of real
vectors and functions, the proof of Lemma 1 is exactly the
same of the one established by Vuong for his Theorem 4.1
[4]. Now, we can show that, by using the mappings (1), (2)
and (3), it is possible to establish the MCRB directly in the
complex field.

19)

Theorem 1. Let 6 be the complex augmented representation
of an MS-unbiased estimator 0 derived under the misspecified
model F from the data vector z. Then for every pz(z) in P :

C(0,8,) > Ay 'Bo, Ay} £ MCRB(8,),  (20)
where
C(Q, Qo) é CC(AH? 00)* CP(?? 00)* , (21)
CP(97 90) CC(O, 00)

is the error covariance matrix of 8 and the block-matrices

Cc(6,60) 2 B, {0006 -00)"}, @

Cp(8,6,) éEp{(é—eo)(é—oo)T}, (23)

are the error covariance and pseudo-covariance matrices of
0. The matrices Ag  and Bg  can be expressed as:

Agie, Agre > A ( J P >
A é *0 0 *0 0 ) B = ZO *90 )
£ ( Agso, Abya, % Py, Ja,
(24)
where
Aeoeo = EP {vggv% In fZ(Z;QO)} ) (25)
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Agp:eo, = E) {Vé, Ve, Infz(z;0,)}, (26)
Jo, = Ep {Vo,In f2(2;8,)Ve In f£(2:0,)}, (27
Py, = E, {Vgo In fZ(z;QO)V;FO In fZ(Z;QO)} , (28)

where the complex gradient Vg, is defined as in (7). Jg,
and Pg, are the Misspecified Information Matrix (MIM) and
Misspecified Pseudo-Information Matrix (MPIM).

Proof: Using the relation in (12), the matrix Aéo can be
rewritten as function of the complex augmented pseudo-true
parameter vector 6, as:

0 (0lnfz(z0,) H H
A —TH (L2 =07 T=T"Ag T
% & {aeo( 00, %

(29)
Similarly, (10) allows us to recast the matrix Béo as function
of 8,:

A mT Oln fz(z;8,) Talan(z§Q())
Ba, =T E”{( 90, 06, T 0

=T7TSBy T =2T"'By T =THBy T,
Yo 2o =0

where S = 01 > Using the mapping in (3) and the

I 0
definitions in (18) and (21), we have:
C(8,8,) = 4T C(6,8,)T. 31)

By substituting (29), (30) and (31) in (17), and by relying on
the properties of T, we get:

THC(0,0,)T > 4[T" Ag, T] ' T#Bg, Tx

H -1 Hp -1 -1 (32)
x [T Ap,T] ~ =T"A, B Ay T.
Finally, we can observe that, from (32):
T [C(0.6,) - A 'Bo, A7 | T>0,  (33)

then, from the properties of the unitary matrices, we obtain
the inequality in (20). This concludes the proof.

It is easy to verify that, when there is no mismatch, i.e.
when Bg, = —Ag, , the bound in (20) is equal to the one
derived in [6] and [9] for unbiased complex estimators.

Corollary 1. If the matrix Ag:q, in (26) vanishes, then:

Cc(0,00) > Agly Jo,Agls - (34)

Proof: The proof follows directly from the inequality (20)
and from the properties of the principal sub-matrices of a
positive semidefinite matrix (see e.g. [21]).

Even though Corollary 1 provides a bound on the error co-
variance matrix, it must be noted that, even if an MS-unbiased
estimator attains the bound in (34), this does not imply that 6
attains the MCRB in (20). In fact, the covariance matrix alone
does not provide a complete second-order characterization of
a complex random vector, and in particular, of a complex
estimator.
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IV. THE COMPLEX CONSTRAINED MCRB

This section provides a generalization to complex parame-
ters of the CMCRB derived in [3]. Suppose that the complex
mismatched estimator 8 is required to satisfy &k (with k < d)
complex constraints C* 5 f(0) = £() + jv(0) = 0. We
assume that A1, A2 and A4, discussed in Sect. III hold true,
while A3 needs to be modified as follows:

A5 The function E,{In fz(z;0)|6 € ©} has a unique

maximum on © = {6 € C?|f(#) = 0} in an interior
point 6.

As before, 8, is the constrained pseudo-true parameter
vector, i.e. the point that minimizes the KL divergence between
pz(z) and fz(z;6). For an exhaustive discussion on the
existence and on the properties of the real representation 6
of the constrained pseudo-true parameter vector, we refer the
reader to [3].

As for the unconstrained case, to derive the complex
CMCRB, we rely on the proof of its real form given in
[3]. We define the 2k x 2d real Jacobian matrix of the real
representation of the constraints £0) = £0)T ~O)T T
as Fg 2 0f(0)/00 € R***24, where 9f(6) /00 represents the
extension of the cogradient operator in (8) to vector valued
functions:

- I . ~ T
of/00 £ | (0f1/06)T (0f21,/00)T |

We assume that rank(Fz) = 2k, ie. the constraints are

non redundant and Fg has full row rank. Then there exists

U e R24x(2d=2k) whose columns form an orthonormal basis

for the null space of Fy, ie. F5U = 0 and UTU =1 At
this point, Theorem 2 in [3] can be recast as:

(35)

Lemma 2. Let 0 be the real representation of a constrained
MS-unbiased estimator 6 € © derived under the misspecified
model F from the data vector z. Then, if UT A 6, U is non-
singular, for every pz(z) in P:

C(6,6,) > U (UTA,, U) ' UTB, Ux

T 1T 2 7] (36)
X (U AgOU) U* = CMCRB(6y),

where C(é,éo), A(;(J and Béo are defined in (18), (15) and

(19), respectively.

Proof: The proof follows directly from the results in [3].
Exactly as for Theorem 1, we show that, by using the
mappings in (1), (2) and (3), it is possible to establish the
CMCRB directly in the complex field. We start by defining
the 2k x 2d Jacobian matrix of the complex augmented
representation of the constraints £(8) = [ £(8)T f(@)7 |”
as Fg £ 0f(0)/00 € C?**24 where 0f(0)/00 represents
the extension of the cogradient operator in eq. (9) to vector
valued functions:

o£/08 2 [ (9f,/00)T - (0f,,/08)7 "

It is easy to verify through direct calculation (see also [7])
that:

(37)
Fj=2"'TH FoTs,,

(38)
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where the subscripts 2d and 2k indicates the size of the matrix
T. Then 2k = rank(F4) = rank(Fg), i.e. Fg has full row
rank. Consequently, there exists A € C24x(2d-2k) whoge
columns form an orthonormal basis for the null space of Fg,
ie. FgA = 0 and ATA =T ([7], [9]). The following
theorem provide the complex form of the CMCRB.

Theorem 2. Let 6 be the augmented complex representation
of a constrained MS-unbiased estimator 0 € O derived under
the misspecified model F from the data vector z. Then, if
AHAQOA is non-singular, for every pz(z) in P:

C(6,0,) > A (A" Ag A)" ABg Ax

H -1 H & (39)
x (A Ag, A) " AH 2 CMCRB(8,),
where C(é, 0,), Ag, and By are defined in (21) and (24),

respectively.

Proof: As in Theorem 1, we can transform C(8, 6,), Ag,
and Béo by using the relations in (31), (29) and (30), respec-
tively. Moreover, by defining D = T34 U and by noticing that,
since U is a real matrix, U” = U, from (36) we get:

- -1
T2C(0,6,)T2a > THD(D"Ag D) x

_ (40)
x D¥Bg, D(D”Ag D) DTy,

From (38) and from the definition of the matrix U, we have
that FéU = 271T§,€FQT2dU = 0, then FQTQdU = FQD =
0. Then, since F'5 has full row rank, D and A span the same
subspace, then there exists an invertible (2d —2k) x (2d — 2k)
transformation L such that DL = A. Finally, the inequality
in (40) can be rewritten as:

C(Q?QO) 2 AL_l[L_HAHAQODAL_1]71X
X L*HAHBQOAL*I [LfHAHAQUDAL’l] “ly _HAH
= A[A"Ag,A] TATBy A[ATAg A] T AT,
(41)

This conclude the proof.

Also in this case, it is trivial to verify that, when there is
no mismatch, i.e. when BQD = _AQO , the bound in (39) is
equal to the one derived [7] and [9].

V. AN EXAMPLE: MISSPECIFICATION OF THE CIRCULARITY

Inspired by the example reported in [6], in this section, we
show how to apply Theorem 1 to a simple mismatched Least
Square problem. Suppose that the complex data vector z € CV
follows a linear measurement model:

z=X60+n (42)

where & € C¢ is the complex unknown parameter vector
to be estimated, X € CN*9 is a known full rank complex
matrix and n € CV is a zero-mean complex random vector.
We analyse the following study case:

o the true but unknown or inaccessible pdf of z, pz(z), is
a non-circular complex Gaussian distribution [15],
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o the assumed pdf fz(z;0) used for data inference is a
circular complex Gaussian distribution,

i.e. we misspecify the circularity property of the collected data
vector. Specifically, the true pdf of z can be expressed as [15]:

pz(z) = NT|7V2 BT 2 exp(g(a) /2) (43)
where:
r =
gla) = (af aT ) ( = ) Z* , (44)

and a £ z — X0. According to the misspecified estimation
framework ( [1], [2], [3]), we assume for z a misspecified
circular Gaussian distribution:

fz(2;0) = 77 N|D| 72 exp((z— X0) T (z— X0)). (45)
For simplicity, following [6], we assume that T' = ¢?Iy, E =
7In, 02> 0and 7 € C.

Our aim here is to show how Theorem 1 can be applied
to obtain the complex MCRB for the linear Least Squares
estimation problem in (42). At first, we need to evaluate
the pseudo-true parameter vector 6y defined in (16). Under
suitable regularity conditions and under Assumptions Al-A4,
6y can be evaluated by solving the following equation:

VoD (pz | fo)lo=e, = VeE,{In fz(z;0)} |o=s, = 0.

(46)

Through direct calculation and neglecting the constant
terms, by substituting (45) in (46) we have:

VoE,{(z —X0)"T'(z — X0)} |g—g, @)

= E,{X"7z - X"#X0} o=, =0,

then E,{z} = X6, and then, from (42), 6y = 6. Now we
pass to evaluate the matrices Ag  and Bg , i.e. the pseudo-
true parameter vector is equal to the true one. At this point,
through some algebra, it is immediate to verify that:

o 2XHAX 0
AQO = ( 0 XTX* > ) (48)
o 2XHX o irXHX*
BQO - < O.—4T*XTX 0.—2XTX* ) (49)
By collecting the previous results, we have that
MCRB(6y) = MCRB(0) and:
_ 2y He)y L T~y L
MCRB@) = | X X TXX) (50)
7 (XTX) o2 (XHX)
When 7 = 0, pz(z) collapses to a circular Gaussian
distribution, then _there exists a vector & € O such that
pz(z) = [fz(z;0) ie. the model is correctly specified.

Consequently, the MCRB(0) reduces to the classical CRB
under circularity assumption for the linear model in (42), i.e.

CRB() = o2(XHX) " [6].
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VI. CONCLUSION

In this paper, the complex form of the MCRB (Theorem 1)
and of the Constrained MCRB (Theorem 2) is provided.
Future works will investigate the efficiency of a given complex
estimator with respect to the derived bounds.
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