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Abstract—We present a non-intrusive codec type and bit-rate
detection algorithm that extracts a number of features from a
decoded speech signal and models their statistics using a Deep
Neural Network (DNN) classifier. We also present a method
for reducing the computational complexity and improving the
robustness of the algorithm by pruning features that have a
low importance and high computational cost using a CART
binary tree. The proposed method is tested on a database that
includes additive noise and transcoding as well as a real voicemail
database. We show that the proposed method has 25% lower
complexity than the baseline, 19% higher accuracy in the bit-
rate detection task and 10% higher accuracy in the CODEC
classification experiment.

Index Terms—CODEC-Identification, Deep-Neural-Network,
Bit-Rate, Voicemail-Classifcation, Speech-Quality.

I. INTRODUCTION

Efficient transmission of speech signals over telephony or
VoIP connections typically requires compression using one or
more speech codecs. The configuration used for a specific
call depends on terminal and network capabilities but also
on the network load at the time of the call. The presence
of a particular codec has been shown to have adverse effects
on many speech processing systems. The type of codec
used in the transmission channel has an impact on speech
quality [1] and it has been shown that the presence of a
GSM codec significantly degrades the performance of speaker
identification and verification systems [2]. A four class codec
identification algorithm was recently shown to help improve
speaker diarization performance [2]. Similarly, identification
of the codec can help validate the authenticity of a recording
for audio forensics. The effect of codec bit-rate on Automatic
Speech Recognition (ASR) has also been widely reported [3],
including a study [4] which showed that significantly higher
error rates were observed for low bit-rate codecs and tandem-
ing codecs dramatically worsened the recognition. Moreover,
the received signal at an Interactive Voice Response (IVR)
system is typically a decoded linear PCM signal, with no
information about the sequence of codec(s) that were applied.
A non-intrusive (without a need for the original unprocessed
signal) bit-rate detection algorithm can thus be used to improve
a number of speech processing systems as well as being a
useful analytics tool for telecommunications traffic.

Two common paradigms in speech coding include waveform
coding and analysis-by-synthesis coding [5]. The waveform
coders are designed to reproduce the time domain waveform
as accurately as possible and the G.711 [6] codec is used

in the public switched telephone network and operates at
64 kbps [5]. The analysis-by-synthesis methods are based
on a linear prediction model and apply perceptual distortion
measures to reproduce only the important characteristics of the
signal [5] with examples including the LPC based GSM-FR
codec [7] and the CELP [8] based AMR codec [9], which are
widely deployed in digital cellular networks.

An algorithm for GSM-FR codec verification is presented
in [10], where the spectral properties of the decoded signal
are modeled with Gaussian distributions of the quadratic co-
efficient of a second order polynomial obtained from training
data. A more recent study presents a Spectral Harmonic
Decomposition (SHD) based codec identification method that
uses a correlation based classifier and is able to identify
five types of codec with hit rates higher than 92% [11].
The algorithm proposed by Jenner et al. [12] extends this
approach of a correlation based classifier and noise template
based feature extraction. An algorithm for detecting the type
of handset used to make a call is presented in [13]. A recent
algorithm using deep learning with raw audio for detecting
transcoded AMR signals was presented in [14]. The methods
for codec identification are mostly tested with clean speech
transmission.

In this paper we present a non-intrusive codec bit-rate de-
tection algorithm with applications in ASR and data analytics.
The feature extraction for this algorithm is based on our
previous work [15]. In this paper we novelly exploit feed-
forward DNNs to model the features and also present a novel
approach for reducing the computational complexity of the
DNN classifier with feature subset selection using Classifica-
tion And Regression Trees (CART) [16]. The proposed method
is shown to reliably estimate the bit-rate of a transcoded
speech signal in additive noise conditions down to 10 dB SNR.
Furthermore, we present results for classifying real voicemail
data using our approach. The remainder of this paper is
organized as follows. In Section 2 we present the baseline and
proposed algorithms. The databases and evaluation metrics are
outlined in Section 3. The results are presented in Section 4
and finally, conclusions are drawn in Section 5.

II. ALGORITHMS

A. NICO-B

The Non-Intrusive CODEC Baseline (NICO-B)
algorithm [15] is a data driven algorithm for detecting
the type and bit-rate of codec from a speech signal and to the
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best of the author’s knowledge, this is the only method for
codec classification whose performance has been published
on noisy, narrow-band telephony data. Therefore, NICO-B
is included here as a baseline algorithm. The method begins
with short-time segmentation of the decoded speech signal
(linear PCM) into 20 ms non-overlapping frames from
which an 82 dimensional feature vector is extracted for each
frame. The 82 per frame features are characterized by their
statistical descriptors in the form of mean, variance, skewness
and kurtosis. Additionally, 16 features characterizing the
long-term spectral deviation are also included, resulting
in 344 global features which are used to train a CART
classification tree along with the class labels for the training
data. No Voice Activity Detector (VAD) is used in the feature
statistics calculations for NICO-B and experiments confirmed
that the best results were obtained when feature statistics
were computed over all frames in the signal.

B. NICO-FR
The NICO Feature Reduced (NICO-FR) algorithm has a

reduced computational complexity and improved robustness
(particularly generalization performance) compared to the
NICO-B algorithm. This is achieved by pruning some of the
features using a CART based feature extraction (discarding
features with low importance and high computational com-
plexity). Also, the CART classifier in NICO-B is replaced by
a Deep Neural Network (DNN) classifier. The pitch, iSNR and
the 16 long term spectral deviation based global features are
removed from the NICO-B feature set using the complexity
control described below. This results in a 25% lower relative
Real Time Factor (RTF), relative to using the full NICO-
B feature set. An overview of the NICO-FR algorithm is
presented in Fig. 1. The left side of the figure shows test phase
where the feature extraction is followed by evaluating the
DNN. In the training phase, the CART analysis is carried out to
identify feature importance and along with feature complexity,
a pruning decision is made and is followed by DNN training.
The Power spectrum of Long term Deviation (PLD) flatness
and Hilbert envelope features were found to be important for
the bit-rate detection tasks and are described in more detail in
the following subsections.

1) Hilbert envelope: The Hilbert decomposition of a signal
results in a rapidly varying fine structure component and a
slowly varying envelope, which has been shown to be an
important factor in speech perception [17]. The envelope for
frame i of the decoded speech signal y(i) is calculated as:

e(i) =
√
y(i)2 + H (y(i))2, (1)

where H {.} is the Hilbert transform. The variance, σe(i) and
dynamic range, ∆e(i) of the envelope for each of the Ni frames
are computed as:

σe(i) =
1

Ni

Ni∑
i=1

(e(i)− µe(i))
2 (2)

∆e(i) = |max(e(i))−min(e(i))|. (3)

2) PLD Flatness: The Long Term Average Speech Spec-
trum (LTASS) [18], is a model for long term shape of the
frequency magnitude of a clean speech spectrum and has been
used in a number of speech processing algorithms, such as
blind channel identification [19]. The Power spectrum of Long
term Deviation (PLD) feature for frame i and frequency bin
k is defined as:

PLD(i, k) = log(Py(i, k))− log(PLTASS(k)), (4)

where Py(i, k) is the magnitude power spectrum of noisy
signal and PLTASS(k) is the LTASS power spectrum. This
measures the effects on the frequency magnitude spectrum
caused by distortions and the per-frame LTASS deviation
spectrum is used to derive the spectral flatness (SF) features
as follows:

SF (i) =
exp

(
1
Nk

∑Nk

k=1 log(PLD(i, k))
)

1
Nk

∑Nk

k=1 PLD(i, k)
, (5)

where k is the FFT bin index and Nk is the number of FFT
bins. The PLD spectral flatness and its rate of change over
subsequent frames are included as short-term features.

3) Complexity Controlled Classifier: A number of DNN
architectures have been proposed in the literature and are
considered the state of the art machine learning algorithms in
a number of applications, including automatic speech recog-
nition [20]. A DNN is a feed-forward artificial neural network
with a number of non-linear hidden units connected between
an input and output layer. The nodes in each layer are connec-
ted with nodes in adjacent layers and each connection is scaled
by a coefficient. The nodes are modelled with a non-linear ac-
tivation function, in our case we use the sigmoid function. The
output layer for a multi-class classification problem typically
uses the softmax function [20]. A strong advantage of DNNs is
that they can be discriminatingly trained by back-propagating
the derivatives of a cost function that measures the difference
between the desired and estimated output and adjusting the
weights of the network in a fine-tuning stage using for ex-
ample the Low memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) optimization algorithm [21].

A common issue with DNNs is the lack of an efficient
feature subset selection algorithm [22] that can help control the
complexity of the system. For this purpose we propose the use
of a CART [16] binary tree algorithm as a method to determine
features with a low importance to the classification task,
independent from the DNN structure. A CART classification
tree is constructed using the training data, using the deviance
split criterion (a negative log likelihood) to grow an initial
tree. The tree is then pruned to a reduced size using 10
fold cross validation. The feature significance can then be
computed by summing the change in deviance caused by
splits in the final pruned model for each feature and dividing
by the corresponding number of branch nodes [16]. This in
combination with the computational complexity of the features
forms the basis of the decision to retain or prune away features.
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Figure 1. NICO-FR block diagram with the CART based feature analysis in
training phase and a DNN classifier in the test phase.

We wish to determine a feature subset Φ̃ by minimising a
function, Ω(Φ, τ ), where Φ is a vector of feature importance
from CART and τ is a vector of feature complexity, subject
to ε(Φ̃) = ε(Φ) + δ, where δ is a tolerance on the overall
hit rate and ε is the hit rate. In this work we perform this
minimization experimentally with δ = 0.1% and find that the
iSNR, pitch and the 16 PLD based global features could be
successfully removed and therefore led to a reduction in the
processing time of the algorithm by 25% compared to using
the entire feature set. Additional computational and memory
reduction was achieved for the DNN model by the reduction in
the size of the input layer and therefore fewer weights and bias
parameters in the model. The final feature set has dimension
of 312 and is used to train a 2 hidden layer DNN classifier
(more details are presented in Section.IV).

III. EVALUATION

Due to a lack of coded speech database with known codec(s)
for the task of codec bit-rate detection, we use the synthesis
of codec speech using a database of clean speech and adding
noise and codec pairs, described in Section 3.1, following the
methodology of other published work in this area. However, in
a real telephony system, the speech signal is not only impacted
by codecs but also potentially by other detrimental effects
like jitter or dropped frames and in order to establish the
extent to which the proposed method performs on real data,
we created a second database using real voicemail messages
from an internal demonstration platform in the UK. Although
information about the specific codec bit-rate was not available,
it was possible to classify whether the message originated from
a landline or mobile phone. This database is described in more
detail in Section 3.2.

A. WSJ1C Database

The speech material is taken from the spontaneous par-
tition of the Wall St Journal database(WSJ1) [23] that was
designed to facilitate the development and evaluation of large
vocabulary, speaker-independent, continuous speech recogni-
tion systems. The spontaneous partition includes dictation of

CODEC 1 CODEC 2

Type BR(kbps) Type BR(kbps) MBR(kbps)

G.711 64.0 G.711 64.0 64.0

AMR 12.2 G.711 64.0 12.0

AMR 7.4 G.711 64.0 8.0

AMR 4.75 G.711 64.0 4.75

G.729 8.0 G.711 64.0 8.0

LPCM 128.0 G.711 64.0 64.0

G.711 64.0 GSM-FR 12.0 12.0

AMR 12.2 GSM-FR 12.0 12.0

AMR 7.4 GSM-FR 12.0 8.0

AMR 4.75 GSM-FR 12.0 4.75

G.729 8.0 GSM-FR 12.0 8.0

LPCM 128.0 GSM-FR 12.0 12.0

Table I
THE TWELVE CODEC TRANSCODING PAIRS USED IN THE WSJ1C

DATABASE. THE MAIN CODEC’S ARE LINEAR PCM (LPCM),
G.711 A-LAW [6], AMR [9], G.729 [24] AND GSM-FR [7].

400 sentences spoken by 40 journalists with varying degrees of
experience in dictation in US English, split evenly into training
and test partitions without any overlap of speech or speaker.
For the WSJ1C database, car and babble noises were added to
the speech at 10, 20 and 30 dB SNR, with randomized noise
segments (to ensure different sections of the noise files are
used). A narrowband telephone channel filter was applied prior
to the twelve combinations of codecs presented in Table I. This
results in 288,000 utterances (20 speakers×200 utterances×2
noises×3 SNRs×12 CODEC combinations) in each of training
and test partitions and different noise sources were used in the
partitions (no overlap of noise sources in test and train).

B. VM Database

The voicemail (VM) database consists of real voicemail
messages deposited by employees over a one year period
and in demonstrations. The data collection passed through
the UK telephone infrastructure and was subject to typical
degradations and signalling protocols. The following two cases
can be identified in the set of messages:

1) Landline-originated-call (LOC) : this should most likely
be a G.711 codec with a 64 kbps bit-rate

2) Mobile-originated-call (MOC): this will most likely be
one or more of the GSM/AMR Codec’s at bit-rates in
the 4.75 kbps to 12.2 kbps range.

The VM database was constructed by randomly selecting
10,000 messages from each of the two classes in the training
partition and 1000 messages in each class were assigned to
the test partition.

C. Metrics

In addition to the confusion matrix for each experiment we
compute the hit rate in each class, defined as the percentage
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MBR PESQ PESQR (%) WAR (%) WARR (%)

64 kbps 3.75 0.0 56.8 0.0

12 kbps 3.45 -8.0 54.1 -5.0

8 kbps 3.41 -9.1 52.8 -7.6

4.75 kbps 3.15 -16.0 49.3 -15.2

Table II
DEGRADATION IN PERCEPTUAL SPEECH QUALITY (PESQ) AND WORD

ACCURACY RATE (WAR) RELATIVE TO THE 64 KBPS MINIMUM BIT-RATE
(MBR) CONDITION IN THE WSJ1C DATABASE. THE WAR WAS OBTAINED

USING A KALDI RECOGNIZER.

of utterances correctly classified, as follows,

HR(%) =

∑N
n=1 Υ(θ̃n, θn)

N
× 100, (6)

where θ̃n is the estimated class label according to some
detection criteria (i.e. codec bit-rate detection) and θn is the
actual class label for the nth speech utterance. The total number
of utterances in the test set is N and Υ(a, b) is defined as:

Υ(a, b) =

{
1 if a= b
0 otherwise. (7)

IV. RESULTS

Here we present the results for the two classification
tasks. The DNN architecture selected using a grid search for
the bit-rate classification task on the WSJ1C database was
312x90x60x4 and 312x90x60x2 for the VM database.

In Table II we present the mean and relative degradation in
PESQ [25] and word accuracy rate (WAR) for the Kaldi ASR
system [26] trained on the WSJ1 database (linear PCM without
a speech CODEC or additive noise). The Kaldi system was
based on a GMM-HMM acoustic model trained with MFCC
features transformed using LDA-MLLT and a trigram lan-
guage model. The final hypothesis is decoded using minimum
Bayesian-Risk re-scoring. It can be seen that as the bit-rate
is reduced from 64 kbps to 4.75 kbps, a 16.0% and 15.2%
relative reduction is seen in PESQ and WAR respectively,
showing that the codec bit-rate has a significant impact on
perceptual speech quality and ASR performance.

The performance of the NICO-B and NICO-FR algorithms
for the bit-rate detection task on the WSJ1C database is
presented in Table III and Table IV, with overall hit rates
being 76.4% and 95.4% respectively. The proposed NICO-FR
algorithm has a higher overall hit rate and better classification
in all the 4 classes than NICO-B. A similar pattern is seen
on the VM database where the task was to identify the origin
type of real voicemail messages. The confusion matrix for the
NICO-B and NICO-FR algorithms for CODEC classification
on the VM database are presented in Table V and Table VI
respectively. Also shown are the overall hit rates, which are
84.5% for NICO-B and 94.5% for the NICO-FR algorithm.
Again, NICO-FR is shown to have a 10% higher overall hit
rate for this task.

NICO-B

Predicted

Actual 64 kbps 12 kbps 8 kbps 4.75 kbps HR (%)

64 kbps 37524 183 406 287 97.7

12 kbps 2715 50397 11431 12256 65.6

8 kbps 6742 22044 63949 22465 55.5

4.75 kbps 501 2152 5039 49908 86.6

Mean HR(%) 76.4

Table III
CONFUSION MATRIX FOR BIT-RATE DETECTION ON THE TEST PARTITION

OF THE WSJ1C DATABASE FOR NICO-B. EACH ELEMENT OF THE MATRIX
REPRESENTS THE NUMBER OF UTTERANCES. THE HR COLUMN PRESENTS

THE HIT RATE FOR EACH CLASS.

NICO-FR

Predicted

Actual 64 kbps 12 kbps 8 kbps 4.75 kbps HR (%)

64 kbps 38072 188 138 3 99.1

12 kbps 72 74684 1997 47 97.2

8 kbps 2167 5052 102003 5977 88.5

4.75 kbps 16 341 1538 55705 96.7

Mean HR (%) 95.4

Table IV
CONFUSION MATRIX BIT-RATE DETECTION ON THE TEST PARTITION OF

THE WSJ1C DATABASE FOR NICO-FR. EACH ELEMENT OF THE MATRIX
REPRESENTS THE NUMBER OF UTTERANCES. THE HR COLUMN PRESENTS

THE HIT RATE FOR EACH CLASS.

NICO-B

Predicted

Actual LOC MOC HR (%)

LOC 845 154 84.6

MOC 156 843 84.4

Mean HR(%) 84.5

Table V
CONFUSION MATRIX FOR DETECTING ORIGINATING CODEC ON VM

DATABASE FOR NICO-B. EACH ELEMENT OF THE MATRIX REPRESENTS
THE NUMBER OF UTTERANCES. THE HR COLUMN PRESENTS THE HIT

RATE FOR EACH FOR EACH CLASS.

V. CONCLUSIONS

We presented a novel application of a non-intrusive codec
bit-rate detection algorithm based on speech feature statistics
modelled with a complexity-controlled feed-forward DNN.
The CART based complexity control helped achieve a 25%
reduction in computational complexity without loss in clas-
sification error rate. This is important for application in a
real world application as the computational complexity is
directly related to the cost of providing a service and even
small reductions in compute requirements can build up when
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NICO-FR

Predicted

Actual LOC MOC HR (%)

LOC 932 67 93.3

MOC 43 956 95.7

Mean HR(%) 94.5

Table VI
CONFUSION MATRIX FOR DETECTING ORIGINATING CODEC ON VM

DATABASE FOR NICO-FR. EACH ELEMENT OF THE MATRIX REPRESENTS
THE NUMBER OF UTTERANCES. THE HR COLUMN PRESENTS THE HIT

RATE FOR EACH CLASS.

processing a large number of signals, such as in a telecommu-
nications infrastructure. We presented two experiments, first
to identify one of four bit-rates of transcoded speech with two
noises added at 10, 20 and 30 dB SNR. In this task the pro-
posed NICO-FR algorithm achieved a mean hit rate of 95.4%
compared to 76.4% with the baseline algorithm. In a second
experiment, the NICO-FR algorithm was trained to detect the
origin of a voicemail message using phone number meta data
as being a land-line originated or mobile originated call. In this
task our approach gave a mean hit rate of 94.5%, validating
the potential for deploying this method for classifying real
telephony data. Moreover, the NICO-FR method was shown
to be robust to additive noise with performance comparable to
other studies on codec identification on clean speech.
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