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Abstract—Automatic segmentation of distinct muscles is a
crucial step for quantitative analysis of muscle’s tissue properties.
Magnetic resonance (MR) imaging provides a superior soft
tissue contrast and noninvasive means for assessing muscular
characteristics. However, automatic segmentation of muscles
using common morphological MR imaging is very challenging as
the intensities and textures of adjacent muscles are similar and the
boundaries between them are mostly invisible or discontinuous.
In this paper, we propose a novel fully automatic framework
for 3D segmentation of muscles on water MR images. This
framework generates the 3D average and probabilistic atlases
of the targeted muscle to automatically define the labeled seeds,
the edges weights, and the constraints of a constrained Random
Walker algorithm. Also, the low-pass filtered atlas-derived muscle
probability map is used to augment the intensities prior to the
graph-based segmentation. This enables automatic localization
of the targeted muscle and enforces dissimilarities between
its intensities and the intensities of adjacent lean tissues. The
proposed algorithm outperforms the original random Walker
algorithm and the conventional multi-atlas registration for muscle
segmentation and is less sensitive to errors in the manually
segmented muscle masks used for training (atlas computation).

I. INTRODUCTION

Automatic muscle segmentation is a crucial step for
quantitative analysis of muscle’s tissue properties such as its
mass, fiber type composition, and morphometrics reflecting
overall muscle quality. Those analyses are proven to be
necessary for early diagnosis and efficient treatment of several
muscular disorders [1]. Magnetic resonance (MR) imaging
provides a superior soft tissue contrast and noninvasive means
for quantifying tissue properties. However, in MR images
acquired by common morphological imaging techniques, most
lean tissues manifest similar intensities and textures. Also,
common spatial resolutions of MR imaging lead to a weak,
discontinuous, or invisible boundary between adjacent tissues.
This hinders development of fully automatic segmentation
algorithms based on MR images.

Graph-based Random Walker algorithm for segmentation
[2] can handle noisy, weak, non-convex, and discontinuous
boundaries between adjacent tissues. However, this supervised
segmentation approach demands user interaction to define
labeled seeds for different classes and has difficulties in
differentiating objects of similar intensities or textures.
Moreover, its performance depends on the number and
distribution of the defined seeds [2]–[4].

To address these issues, some varieties of the Random

Walker algorithm have been proposed to incorporate prior
knowledge about object’s shape and adjacency into the image
graph [3]–[5]. Those priors can be inferred by using learning-
based algorithms such as multi-atlas registration [6], [7]
or statistical shape and local appearance models [6], [8].
However, they demand a comprehensive training data to
capture a sufficient range of shape and intensity variations.

Such training data are typically generated from manually
segmented masks of the targeted object on several image
data sets. Manual segmentation is tedious, costly, error-prone,
and subject to inter- and intra-evaluator variabilities. These
hinder the computation of an accurate prior model when a
sufficient amount of expertise, time, cost, or image data set
is not available. Furthermore, the accuracy of the manually
segmented volumes are limited by the quality of the used
images. Thus manual segmentation is essentially affected by
the same errors that impact automatic segmentation.

In this paper, we propose a fully automatic algorithm for
3D segmentation of the distinct muscles on water MR images
by addressing the aforementioned challenges. This algorithm
employes a constrained Random Walker algorithm preceded
by computing muscle’s average and probabilistic atlases.

The atlas-derived muscle probability map is used to
automatically localize the targeted muscle and to enforce
dissimilarities between muscle’s intensities and the intensities
of adjacent tissues. Also, this map and the detected boundaries
between tissues define the labeled seeds, the edges’ weights,
and the constraints of the constrained Random Walker
algorithm to improve muscle probability map for an accurate
muscle segmentation on non-contrast-enhanced MR images.

For segmentation, muscle probability maps are generated
by a conventional multi-atlas registration and its combination
with the original Random Walker algorithm [2] or the proposed
constrained Random Walker algorithm. For each subject’s
image, these three sets of probability maps are thresholded
to obtain the automatically segmented muscle masks. These
masks are evaluated against the manually obtained ground
truths. By introducing errors in the manually segmented
muscle masks used for atlas computation, the sensitivities of
the above methods to these errors are also evaluated.

These evaluations are done for automatic 3D segmentation
of the psoas major and quadratus lumborum muscles on water
MR images. However, all the compared methods are generic
and applicable to other muscle compartments as well.
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II. MATERIALS AND METHODS

A. Preprocessing of MR Images
The proposed method is developed using 3D water MR images
of 48 (20 training and 28 test) asymptomatic volunteers.
These images are acquired by a chemical-shift-encoded pulse
sequence with an isotropic spatial resolution of 1.7 mm. In
these images, lean tissues are bright and fatty compartments
are suppressed. Each 3D image is normalized in intensity to
the range [0,1]. All 3D images are resized to a common size
and the edges between different tissues are detected using a
3D Canny edge detector [9]. The detected edges are used in
the new constrained Random Walker algorithm described in
subsection II-C. Fig. 1 shows an axial slice of a 3D water
image with the targeted muscles and the detected edges.

Fig. 1. An axial slice of a 3D water image showing the psoas major (pm)
and quadratus lumborum (ql) muscles (a), and the detected edges (b).

B. The 3D Average and Probabilistic Muscle Atlases
The 3D average and probabilistic muscle atlases are computed
using the training data set. This data set consists of the 3D
water images and the manually segmented muscle masks of
M = 20 volunteers. These masks are denoted by {Mk}Mk=1.

The 3D water image of an arbitrarily selected volunteer is
taken as a source and is rigidly registered to M −1 remaining
water images using a block matching procedure [10]. The
M − 1 deformed images {D(0)

k }Mk=2 and the source image
D

(0)
1 are averaged to yield the first 3D average atlas A(0). The

resulting transformations are denoted by {T rk }Mk=1, where T r1
is an identity transform for the source image.

To reduce the computational burden of the subsequent
nonrigid registrations, a resolution pyramid of L levels is built
from {D(0)

k }Mk=1. In the lth level, {D(l,0)
k }Mk=1 is obtained by

down-sampling {D(0)
k }Mk=1 to the spatial resolution of this

level. The lowest (highest) level corresponds to the coarsest
(finest) spatial resolution. The computations start from the
coarsest resolution l = 1, in which A(l,0) is obtained by down-
sampling A(0) to the coarsest resolution.

In the lth level, over multiple iterations {i}Ili=1 of a non-rigid
phase-difference-based Morphon registration algorithm [11],
{D(l,0)

k }Mk=1 are registered to A(l,0). The deformation fields of
the ith iteration {T (l,i)

k }Mk=1 get updated using a diffeomorphic
field accumulation [12]. The final (accumulated) deformation
fields of the lth level {T (l,Il)

k }Mk=1 yields the warped images
as {D(l,Il)

k }Mk=1 = {T (l,Il)
k (D

(l,0)
k )}Mk=1. Then the average atlas

of this level is updated by A(l) = 1
M

∑M
k=1D

(l,Il)
k . A spline

interpolation of A(l) yields A(l+1,0) for the next level.
The above procedure is repeated until the average atlas A(L)

and the accumulated deformation fields {T (L,IL)
k }Mk=1 of the

finest (original) resolution are obtained. In our case, L = 5,
IL = 1, and {Il = (L− l) ∗ L}L−1l=1 .

The overall transformations {Tk = T rk o T
(L,IL)
k }Mk=1 are

used to warp {Mk}Mk=1 yielding {Tk(Mk)}Mk=1. These warped

binary masks are overlaid and their overlap percentages are
counted to produce the 3D probabilistic muscle atlas P . This
way, Ppm for the psoas major (pm) and Pql for the quadratus
lumborum (ql) muscle are obtained separately. Regarding the
disconnection of these muscles, an overlay of Ppm and Pql is
denoted by P = Ppm + Pql. Fig. 2 shows an axial slice of
A(0), A(L), and P = Ppm+Pql. These atlases are used by the
new constrained Random walker algorithm.

Fig. 2. An axial slice of A(0) (a), A(L) (b), and P = Ppm + Pql (c).

C. The Constrained Random Walker Algorithm
The Random Walker algorithm [2] models an image as a
graph G = 〈V, E〉, where each vertex vi ∈ V represents a
voxel and spatially neighboring vertices are connected with
undirected edges eij ∈ E . The degree di of a vertex vi
is given by di =

∑
eij∈E w

rw
ij , where wrwij is the weight

of eij . We consider a 26-connected graph stemming from a
3 × 3 × 3 stencil of second order neighborhoods. For binary
voxel classification, this algorithm uses a set of foreground
SF and a set of background SB seeds with SF ⊂ V , SB ⊂ V
and SF ∩ SB = 0 to determine the probability 0 ≤ prwi ≤ 1
that a random walker starting from vi will first reach one of
the foreground seeds before arriving at any of the background
seeds. Clearly, ∀vi ∈ SF , prwi = 1 and ∀vi ∈ SB , prwi = 0.
Also, ∀vi ∈ V − (SF ∪ SB) the following condition holds:

prwi =
1

di

∑
eij∈E

wrwij · prwj . (1)

Solving the above system of linear equations returns the
probability prwi that vertex vi ∈ V − (SF ∪ SB) has label SF .
Then the foreground object (targeted muscle) is segmented by
prwi ≥ 0.5. The above system of equations can be extended
by imposing additional constraints on the set of voxels located
on the boundaries between different tissues (SH ) and the
set of voxels located around these boundaries (SS). The
resulting constrained Random Walker algorithm computes the
probability pcrwi that vertex vi has label SF as [4]:

pcrwi = argmin
pi

( ∑
eij∈E

wcrwij · (pi − pcrwj )2

+
∑
vi∈SS

λi · (pi − 0.5)2
)
,

s.t.


pcrwi = 1, vi ∈ SF
pcrwi = 0, vi ∈ SB
pcrwi = 0.5, vi ∈ SH

.

(2)
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Vanishing the derivative of the above cost function with
respect to pi yields the following system of equations that
can be solved efficiently [4]:

pcrwi =


1

di+λi

( ∑
eij∈E

wcrwij · pcrwj + 0.5λi

)
, vi ∈ SS

1
di

( ∑
eij∈E

wcrwij · pcrwj
)
, vi ∈ V − SC

(3)

with SC = SF ∪ SB ∪ SH ∪ SS .
In our approach, we do not set λi empirically constant,

rather equal to λi = 1

|gsi−gh|
, where gsi is the intensity of

vi ∈ SS and gh is the average intensity of all vi ∈ SH .
This yields a spatially varying regularizer that weighs the
contribution of vi ∈ SS according to the similarity of its
intensity to gh.

Eq. 3 implies addition of a virtual neighbor vertex of 0.5
probability to each vi ∈ SS via a virtual edge with weight λi.

In addition to the spatially varying regularization, our main
contributions to the constrained Random Walker algorithm, in
difference to the previous works [2], [4], are the ways of
• determining SF , SB , SH , and SS ,
• defining edge weights of the Random walker graph.

D. Determination of SF , SB , SH , and SS
The average atlas A(L) (obtained from the training phase) is
warped to the 3D water image of each test subject by using
the aforementioned rigid and non-rigid registrations [10], [11].
The resulting deformation fields of those registrations are used
to warp the muscle probabilistic atlas P . This yields an atlas-
derived probability map Pmar for each test subject (mar stands
for the multi-atlas registration). It contains the probability pmari

of each vi ∈ V to be part of the targeted muscle. Fig. 3 shows
an axial slice of the warped A(L) and P = (Ppm + Pql), and
the overlaid probability maps Pmar = (Pmarpm + Pmarql ).

Fig. 3. An axial slice of: a) the rigidly warped A(L), b) the rigidly warped
P = (Ppm + Pql), c) the non-rigidly warped version of (a), d) the non-
rigidly warped version of (b) or the atlas-derived muscle probability map, i.e.,
Pmar = (Pmar

pm + Pmar
ql ).

To extract the labeled seeds of the constrained random
walker algorithm, the 3D atlas-derived muscle probability map
Pmar is spatially low-pass filtered by a Gaussian kernel with
a standard deviation SD = 3 (see subsection II-F).

The final segmentation is based on the probability map P crw

computed by the constrained random walker algorithm. Thus,

the above filtering does not blur the final segmentation. It
rather reduces the impact of the low confident regions of Pmar.
These regions are mostly located near the edges of the targeted
muscle. They stem from a small number of training samples
or errors in the manually segmented muscle masks {Mk}Mk=1

used for atlas computation. In the low-pass filtered map P̂mar,
regions of p̂mari ≥ 0.9 and p̂mari ≤ 0.1 are assigned to SF and
SB , respectively. SH and SS are given by

SH = E ∩ (V − (SF ∪ SB)), (4)
S′S = {vi| |p̂mari − 0.5|≤ ε} ∩ (V − (SF ∪ SB)), (5)
SS = S′S − SH , (6)

where E is the set of voxels on the detected boundary edges
(see subsection II-A) and ε = 0.03 is an empirically set
threshold. The above definitions ensure no overlap between
SF , SB , SH , and SS . Fig. 4 shows SF , SB , S′S , and SH for
an axial slice of the water image of a test subject.

Fig. 4. a) The regions of SB (blue), SF (red), and SH (green) for an axial
slice of the water image of a test subject. b) The regions of SB (blue), SF

(red), and S′
S (orange) for the same slice.

E. Defining Edge Weights of the Random Walker Graph
To build the 3D image graph of the constrained Random
Walker algorithm, edge weights wcrwij are defined as:

wcrwij = 1/(1 + β · (gd(vi, vj))2), (7)

where gd(vi, vj) is the geodesic distance between gray-level
intensities of vi and vj , and β = 3.2 (see subsection II-F).
According to [13], the above function is preferred to the
Gaussian function because of its better performance with
regard to the quality and stability of the segmentation.

To compute gd(vi, vj), another graph is built in
correspondence to the 3D image data. In this undirected
26-connected graph, each vertex represents one voxel and
two neighboring vertices (vi, vj) are connected via an edge
of weight wgdij . The weights are given by

wgdij = |(gi + p̂mari )− (gj + p̂marj ))|
= |(gi − gj) + (p̂mari − p̂marj )|,

(8)

where gi is the original (normalized) gray-level intensity of
vi, and (gi + p̂mari ) its augmentation. Considering ∀vi ∈ V ,
min(gi+ p̂

mar
i ) and max(gi+ p̂

mar
i ) are computed and based

on these the augmented intensities are normalized to [0,1].
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Then, gd(vi, vj) is calculated as the smallest sum of the edge
weights wgdmn over all possible paths Cvi,vj connecting vi and
vj through the 26-connected graph. This is given by [14]

gd(vi, vj) = min
Cvi,vj

∑
m,n

wgdmn, m, n ∈ Cvi,vj . (9)

The above distances are optimally computed in a linear time
using an enhanced Dial’s algorithm [15]. Having SF , SB ,
SH , SS , and wcrwij , the new foreground probability pcrwi is
computed by solving the Eq. 3.

Fig. 5. Left column: An axial slice of the 3D water image of a test subject
with normalized intensities of gi + pcrwi (CRW-C), gi + p′crwi (CRW-E),
gi+prwi (RW-C), gi+p′rwi (RW-E), gi+pmar

i (MAR-C), gi+p′mar
i (MAR-

E). Right column: The corresponding masks of the automatically segmented
muscle volumes (red) and the ground truths (green) and their overlap (yellow)
over the same slice.

F. Hyperparameter Optimization
Two hyperparameters, SD of the Gaussian kernel and β in
Eq. 7, are optimized by a search over all combinations of
SD = {1, 2, ..., 10} and β = {2, 2.2, ..., 5} and a 4-fold cross
validation of the automatic segmentation against the ground
truths on the training data.

III. EVALUATIONS ON THE TEST IMAGES

The 3D average and probabilistic muscle atlases are computed
using the training data. Then the targeted muscles are
automatically segmented over the 3D water images of T = 28

test subjects and the segmentation results are evaluated against
the manually obtained ground truths {Gk}Tk=1.

This way, the proposed algorithm (CRW) is evaluated
against the multi-atlas registration (MAR) and the original
Random Walker algorithm (RW) [2] whose labeled seeds are
defined in the same way as for the proposed method. These
evaluations are done with regard to the segmentation accuracy
and its sensitivity to errors in the manually segmented muscle
masks used for the training.

To evaluate the aforementioned sensitivity, errors of around
20% of the muscle volumes are added to the borders of the
manually segmented muscle masks of the training data. The
resulting erroneous masks are denoted by {M ′k}Mk=1. The 3D
average and probabilistic muscle atlases are computed once
using the correct ({Mk}Mk=1) and once using the erroneous
({M ′k}Mk=1) muscle masks. The resulting correct and erroneous
muscle atlases yield muscle probability maps {Pmark }Tk=1

and {P ′mark }Tk=1 for T = 28 test subjects according to the
procedure described in subsection II-D.

The atlas-derived probabilities, contained in {Pmark }Tk=1 and
{P ′mark }Tk=1, are also used to determine the labeled seeds, the
edge weights, and the constraints of the CRW (see subsections
II-D and II-E) and the labeled seeds (SF and SB) of the
RW [2] (in the same way as for the CRW) to eliminate user
interactions for seed selection. However, the edges’ weights
of the RW are defined according to its original proposal, i.e.,
wrwij = exp(−β(gi−gj)2) [2]. This way, for the CRW, muscle
probability maps {P crwk }Tk=1 and {P ′crwk }Tk=1, and for the
RW, muscle probability maps {P rwk }Tk=1 and {P ′rwk }Tk=1, are
obtained. Omitting the methods indicators (CRW, RW, MAR),
the automatically segmented muscle masks ({Bk}Tk=1 and
{B′k}Tk=1) are obtained by extracting the regions of pi ≥ 0.5 or
p′i ≥ 0.5 in those probability maps. Objective evaluations are
done by computing the Jaccard index {Jk = (Bk∩Gk)/(Bk∪
Gk)}Tk=1 and {J ′k = (B′k ∩Gk)/(B′k ∪Gk)}Tk=1, respectively.
Fig. 6 shows the box plots of the computed Jaccard indices
for different segmentation methods.

Fig. 6. The Jaccard index comparing the ground truths and the automatically
segmented masks of the psoas major (a) and quadratus lumborum (b) muscles
obtained from the CRW, the RW, and the MAR using correct (C) or erroneous
(E) manual segmentations for atlas computation.

Fig. 5 shows subjective results of the aforementioned
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evaluations for an axial slice of the 3D water image of a test
subject. In each case of Fig. 5, the automatic segmentations
of the pm and ql muscles are done separately. However, for
a more compact demonstration, the automatically segmented
masks are merged in one image and compared with the
merged ground truths. The CRW using the correct and
erroneous muscle atlases are denoted by CRW-C and CRW-E,
respectively. Same is done for the RW and the MAR method.

IV. DISCUSSION

As shown in Fig. 6, MAR has the poorest performance and
highest sensitivity to errors in the manually segmented muscle
masks used for the training. Its poor performance is due to
the small number of training samples. Its sensitivity to the
aforementioned errors is due to the direct impact of these errors
on final automatic segmentation.

However, our new way of defining edge weights for the
Random Walker graph, augmenting intensities of the targeted
muscle by a low-pass filtered atlas-derived probability map,
and use of additional seeds (constraints) for muscle probability
computation lead to the highest performance

Due to the effects of the low-pass filter, the intensity
augmentation gets reduced on muscle borders. This, however,
does not blur the final segmentation because the random
walker defines this segmentation. Also, the employed geodesic
distance enhances the delineation of the muscle borders
by a better capturing of compositional structures. This is
due to the incorporation of both intensity gradients (with
respect to the shortest paths) and spatial (Euclidean) distances
between intensities in this distance metric [16]. The additional
constraints provide a stronger guidance for the graph-based
segmentation with regard to the true boundaries of the
targeted object (SH ) and the transition between foreground
and background regions (SS). SH is independent of the muscle
atlases and their errors. However, SS varies by such errors but
these variations cannot cause a problem for the CRW algorithm
as SS can be inside or outside of the muscle.

The performance of the RW and our proposed CRW
algorithm has also slightly degraded with errors in the
manually segmented masks. This is due to the sensitivity of all
RW-based algorithms to the number of labeled seeds [2]–[4],
as the foreground seeds get reduced by having errors in the
atlas-derived muscle probabilities.

Our way of intensity augmentation (represented in Eq.
9) is similar to an approach proposed for interactive image
segmentation [4]. However, instead of histogram-derived
priors, we use atlas-derived muscle probabilities to define
the edge weights of the random Walker graph. Thus, our
approach eliminates the need to estimating the distance
between the histograms of the foreground and background
intensity distributions in order to appropriately penalize similar
intensities of adjacent tissues. This is advantageous because
1) computation of such a distance is expensive, 2) the
histogram-based approach cannot improve the segmentation
quality if the foreground and background intensity distributions
are not well separated. This is the case in many clinical
applications since most (healthy) lean tissues show similar
intensity distributions on non-contrast-enhanced MR images.
This reduces the distance between their histograms and thus

boils down the previous approach [4] to the original Random
Walker algorithm. We did not address automatic segmentation
of pathological tissues. This can be a future extension.

V. CONCLUSION

In this paper, we propose a fully automatic approach for 3D
segmentation of muscles on water MR images by tackling
challenges due to the similar intensities of adjacent tissues and
discontinuities of muscle boundaries. The proposed algorithm
uses a small number of training samples and can tolerate
errors in the manually segmented muscle masks used for the
training. This is achieved by using a constrained Random
Walker algorithm with a new automatic mechanism for seed
selection and edge weighting.
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