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ABSTRACT

In this paper, we investigate the localization performance of

far field sources that have sparse time-frequency (T-F) repre-

sentations. The Cramér-Rao Bound (CRB) under the sparsity

assumption is developed and the impact of the T-F sparsity

prior on the localization performance is analyzed. In partic-

ular, one studies how the different T-F sparsity properties i.e.

local SNR level, source supports spreading and source over-

lapping and orthogonality affect the CRB of the Direction-of-

Arrival (DoA) estimation. The obtained results show that the

sources T-F orthogonality has the most significant impact on

the localization performance. Simulation results are provided

to illustrate the concluding remarks made out of this study.

Index Terms— CRB, Time-Frequency, Sparsity, DoA.

1. INTRODUCTION

Blind Source Separation (BSS) and DoA estimation are two

problems for which a solution can be derived under a vari-

ety of priors such as statistical independence, orthogonality,

stationarity, and sparsity. The localization performance de-

pends strongly on the considered prior. In this work, we focus

our study on sources with sparse Time-Frequency (T-F) repre-

sentations. Indeed, exploiting such T-F representations leads

to improved source separation and DoA estimation perfor-

mance [1–7]. Moreover, it has been shown that the T-F based

approaches are more efficient than classical methods when

applied to BSS or DoA estimation in hard scenarios (e.g.,

convolutive mixtures [8], underdetermined systems [9–13],

dependent sources [14–16], and non-stationary signals [11,

17, 18]). This efficiency is due to the fact that in the T-F do-

main it is possible to exploit the signals sparse T-F signatures

and (eventually their partial) orthogonality [8, 19, 20]. Re-

cent works [21–23] have demonstrated that by assuming that

the sources can be sparsely represented in a given domain,

source separation/localization can be achieved by exploiting

this property. The main benefit of such sparse representation

is twofold: first, in overdetermined cases, it significantly im-

proves the estimation of DoA and the localization quality of

the sources; second, in underdetermined cases, it transforms

the ill-posed separation problem into a resolvable one.

However, to the best of our knowledge, there has been no

dedicated analysis on the impact of those priors on the local-

ization performance. In this paper, we propose a thorough

analysis of the latter in different scenarios that highlight the

situations leading to most significant gains. The effect of the

sparsity and the T-F orthogonality priors on the DoA estima-

tion accuracy is investigated through the computation and the

analysis of the CRB under the sparsity assumption.

2. PROBLEM FORMULATION

We consider a Uniform Linear Array (ULA) receiving m sig-

nals x(t) from n narrowband, far field, closely spaced sources

s(t), located at DoAs αi, i = 1, · · · , n, respectively.

x(t) = A s(t) + e(t), t = 1, 2, ..., N (1)

where the noise e(t), is assumed to be zero mean, circular,

Gaussian distributed random vector with covariance matrix

Re = σ2
Im and A = [a1(α1), · · · , an(αn)] is the steering

matrix. The source snapshots s(t) are assumed to be deter-

ministic but unknown. By stacking the N data samples into a

single vector, we can write:

X = (IN ⊗A) S+E (2)

withX = [x(1)T , · · · ,x(N)T ]T , E = [e(1)T , · · · , e(N)T ]T ,

S = [s(1)T , · · · , s(N)T ]T , and the operator ⊗ stands for the

Kronecker product. Under the aforementioned assumptions,

the observed data is a circular, Gaussian random vector with

mean μ = (I⊗A) S and covariance matrix Rx = σ2
ImN .

The unknown parameter vector to be estimated is Θ =
[θT ,ΨT ]T where θ = [α1, · · · , αn]

T , and Ψ
T is a vector

of all the nuisance parameters, i.e. Ψ = [�(S),�(S), σ2]T

where � and � stand for the real and imaginary parts.

Hence, the impact of the previously mentioned source

properties on the DoA estimation accuracy (i.e., the CRB)

can be quantified through the computation of the top left

n × n θ-block of the Fisher Information Matrix (FIM) in-

verse. Under the data model assumptions in (2), the θ-block

of the CRB matrix w.r.t. the vector Θ is given by [24]:

Cdet(θ) =
σ2

2N

{
�
(
(DHΠ⊥

A
D)�Rs

)}−1
(3)
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where D = ∂A
∂θT is the derivative of A with respect to θ,

Π⊥

A
is the complement of the orthogonal projection onto the

range space of A, Rs =
1

N

∑N

t=1
s(t)sH(t), and the operator

� stands for the Hadamard product.

3. SPARSE TIME-FREQUENCY REPRESENTATION

Different T-F signal representations exist in the literature [19]

including the simplest one given by the Short Time Fourier

Transform (STFT). For a non-stationary signal u(t), its STFT

U(k, j) is obtained by applying the discrete Fourier transform

(DFT) to the T segments1 of a signal u(t) each of them of

length N [16]:

Uj = F uj uj = F
H

Uj , j = 1 : T (4)

where F denotes the unitary N × N DFT matrix and uj =

[u(N(j − 1) + 1), · · · , u(jN)]
T

.

Assuming that the time-frequency representation of the

signal u(t) is s-sparse (u(t) is localized in the time-frequency

domain), each signal segment can be represented by s < N
parameters:

uj = F
H

Uj = F
s
cj , j = 1 : T (5)

x where vector cj contains only the s non-zero entries of the

N -element vector Uj and the matrix F
s is composed of the

corresponding s columns of FH . It follows that the NT sam-

ples of the signal u(j) can be represented using only sT time-

frequency points:

u = H c (6)

where u = [u(1), · · · , u(NT )]
T

, c =
[
c
T
1
, · · · , cTT

]T
, are

the original and T-F activation coefficient, respectively, and

H = I⊗ F
s is the dictionary matrix.

Now, let us consider n sources Si(k, j), i = 1, · · · , n, all

localized in the time-frequency domain:

si = Hi ci, i = 1, · · · , n (7)

Based on (6) and (7), the time-domain representation of

the vector S =
[
s(1)T , · · · , s(N)T

]T
is given by:

S = H c (8)

with a nsT -dim sparse2 coefficient vector c =
[
c
T
1
, · · · , cTn

]T

and a nNT × nsT dictionary matrix

H =
[
H1, · · · ,Hn

]
=

⎡
⎢⎢⎢⎢⎢⎣

H1(1, 1 : sT ) 0

0 Hn(1, 1 : sT )
.
.
. · · ·

.

.

.

H1(NT, 1 : sT ) 0

0 Hn(NT, 1 : sT )

⎤
⎥⎥⎥⎥⎥⎦

1For simplicity sake, we suppose that the T segments of u(t) used to

compute its STFT are non-overlapping.
2For notational simplicity & w.l.o.g., we assumed all sources have the

same sparsity index ′s′.

Replacing (8) in (2), we get the following sparse model:

X = (IN ⊗A) H c+E (9)

4. IMPACT OF THE SPARSE T-F REPRESENTATION

4.1. T-F sparsity based CRB

The aim is to analyze the impact of the sparsity on the DoA es-

timation performance considering the sparse representations

of the original sources. In the following, we develop the CRB

under the sparse representation model in (9).

Theorem 1 Under the sparsity assumption, the θ-block

of the CRB, w.r.t. the extended parameter vector ΘT =
[θ,�(c),�(c), σ2] (assuming H known) is given by:

Csparse(θ) =
σ2

2

{
�

(
(S

H
S)� (DH

D)− (S
H
H) � (DH

A) (10)

(
(HH

H) � (AH
A)

)
−1

(HH
S) � (AH

D)

)}
−1

with S = [s(1), · · · , s(N)]
T

, and the operator � stands for

the Khatri-Rao product.

Based on this general result, we focus now on particular

but insightful situations given by Theorem 2:

Theorem 2 Knowing H, the sparsity property has no impact

on the DoA estimation accuracy for the two following cases:

• The mono source case: C1d
sparse(α) = C1d

det(α)

• The full overlapping signals case: If the n source sig-

nals share exactly the same support (Hi = H, i =
1, · · · , n) then Csparse(θ) = Cdet(θ)

Nevertheless, if the supports of the n sources are completely

disjoint (i.e. H
H
i Hj = 0 for all 1 ≤ i �= j ≤ n) then the

source signals can be localized with the mono source perfor-

mance i.e.

Csparse(αi) = C1d
det(α) =

1

2NSNR (dHΠ⊥
a
d)

where SNR = S
H
S/(Nσ2).

Proof 1 See [25]. Due to the space limitation, the deriva-

tions are omitted in this paper.

4.2. Impact of the Sparse T-F Representation

The T-F sparsity of the sources induce different properties that

are discussed briefly in this section before their investigation

through CRB analysis in section 5.
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• Contextual3 sparsity: It has been stated in [26, 27] that

the contextual sparsity priors have no effect on the lo-

calization performance in the deterministic case. It fol-

lows that if the source supports in the T-F domain are

not known, it will not be possible to take advantage

from the sparse T-F representation.

• Sparsity as information: The sparse T-F signatures re-

sult in partial (or possibly total) orthogonality of the

sources which enables source discrimination and leads

to high localization performance if this a priori infor-

mation is considered in the data model. However, for

the mono source case, there is no need for such ’source

discrimination’ and hence the sparsity has no impact on

the localization performance4 for the ULA case consid-

ered herein, the CRB expression in (3) coincides with

the one in (10).

• Overlapping impact: it has been shown that the under-

determined source separation/localization is made pos-

sible based on the non-overlapping property. If the

source signals are completely disjoint in T-F domain,

they can be individually localized reaching the mono

source performance. When the source supports are

completely overlapped, the orthogonality assumption

is no longer valid and hence no performance gain will

be obtained through the sparsity prior.

In intermediate situations to quantify the impact of the

partial source overlapping on the localization perfor-

mance, two aspects need to be considered: the overlap-

ping size ratio (the relative size of the overlapping area

to the total size of the source supports in the T-F do-

main) and the overlapping power ratio (the power of the

overlapping part of each source to its total power). For

a highly overlapping case (the size of the shared support

is much larger than the non-overlapping supports or the

power of the overlapping part is much higher than the

power of the non-overlapping parts). In that context,

the gap between the sparse case and the non sparse case

decreases significantly.

5. RESULTS AND ANALYSIS

The contributions of the sparse T-F representation prior on

the sources localization performance is illustrated in this sec-

tion through some simulation experiments. We consider two

narrowband source signals with DoAs α and α + δ, respec-

tively, received by an ULA of m = 5 antennas. Two uniform

3By contextual prior, we mean that it is considered only for the source

generation process and not considered as known assumption for the perfor-

mance derivation.
4This is a non obvious result as many authors claimed that the local SNR

increase, due to the spreading of noise in the T-F domain, leads to localization

performance improvement.

i.i.d sources are generated in the T-F domain on a rectangu-

lar support (see figure 1) corresponding to Nf = 8 frequency

bins by Nt = 8 time point (64 time-frequency points for each

source). The frequency overlapping between the two source

supports can vary from 0 (different supports) to 8 frequency

bins (the same support for the two sources). Unless other-

wise specified, the number of points to compute the Inverse

Fourier Transform N is equal to 32, the number of snap-

shots is T = 32, and the signal-to-noise-ratio (SNR) is set

equal to 20 dB. The source power is normalized to unity (i.e.

s
H
i si/N = 1) and the SNR is controlled through the variation

of the noise power.

In the first simulation scenario, one source case is con-

sidered. The localization performance is evaluated with and

without sparsity prior. As illustrated in figure 2, the sparsity

prior has no impact on the localization performance for the

mono source case. Indeed, one can show that both CRB ex-

pressions (for sparse and non sparse cases) coincide.

With contrast to the mono source case, the T-F sparsity

has a strong impact on the localization performance when two

non-overlapping sources are considered. In this case the per-

formance are similar to those of the mono source case (since

the sources have different supports and hence can be sepa-

rated by T-F masking). The performance of the sparse case

decreases when the overlapping zone increases until it reaches

the performance of the non-sparse case when the two sources

have the same support (completely overlapped sources). We

can also see that for only one non-overlapping frequency bin,

one gains approximately 30dB in localization performance.

Another aspect that has to be considered for the evaluation

of the overlapping impact on the localization performance is

the relative power of the overlapping part of each source w.r.t.

the power of its non-overlapping part. In this second simula-

tion scenario, the overlapping length is set to 4 frequency bins

(a 50% overlap) and the signal-to-overlapping-ratio5 (SOR)

of the first source is varied from −60 dB to 40dB and the

SOR of the second source is set equal to 1. The behavior of

localization performance for the sparse and non-sparse cases

are depicted in figure 3. The performance is similar to the

mono-source case when the SOR is higher than 0dB and is

close to those of the two sources, non-spare case when the

SOR is low (−40dB). Indeed, this situation represents the

cases, considered for example for the underdetermined audio

source separation, where at each T-F point only one source

signal has a ’non negligible’ energy contribution (i.e. high

SOR).

The sparsity degree defined as the ration s/N is an impor-

tant factor for the quantification of the T-F sparsity impact on

the localization performance. Figure 4 shows its effect on the

CRB. One can see that with a sparsity degree of 50% (or less)

the performance of the mono source case is almost reached.

From the three simulation scenarios, it can be concluded

5The SOR is equal to the ratio of the power of the non-overlapping part

over the power of the overlapping part.

2016 24th European Signal Processing Conference (EUSIPCO)

1943



that the prior given by the sparse representation has a signif-

icant positive impact on the localization performance when

two sources have small non-overlapping areas with favorable

SOR and low sparsity degree.
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Fig. 1. Source generation scenario in the T-F domain.

6. CONCLUSION

Many authors have observed that the separation or localiza-

tion performance of non stationary sources can be signifi-

cantly improved thanks to their sparsity in the T-F domain.

In this work, we investigated this issue through the derivation

of the CRB expression for the DoA estimation. Based on this

analysis the following remarks can be drawn:

• The T-F sparsity results in local SNR improvement

(since the noise power is spread over the whole T-F

domain while the signal power is localized in a small

area). This local SNR improvement leads to perfor-

mance gain for some existing localization methods

(e.g. MUSIC method [5]). However, for the perfor-

mance bounds, this local SNR improvement has little

if no impact at all (one can see it from the mono-source

CRB where the sparse and non-sparse cases coincide).

• A significant gain due to the sources T-F sparsity is ob-

tained when the latter have known ’non-overlapping’

regions in the T-F domain. Even when the non-

overlapping regions represent a very small part of the

T-F domain (10% or less), a strong gain is observed

and the localization performance is close to the one we

get in the mono source case.

• If the sources are sparse but with unknown T-F sup-

ports (i.e. contextual sparsity), the mentioned localiza-

tion gain is lost. Practically, this means that we should
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Fig. 2. Impact of the sparsity and overlapping on perfor-

mance: 1d (resp. 2d) refers to the mono-source (resp. 2

sources) case.

’detect’ the regions in the T-F domain where the sources

are active before using such information for the local-

ization or source separation. Note that this approach is

already considered by many localization or separation

methods developed for the underdetermined case.
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