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Abstract—Compressive sensing (CS) has been shown useful
for reducing dimensionality, by exploiting signal sparsity inher-
ent to specific domain representations of data. Traditional CS
approaches represent the signal as a sparse linear combination
of basis vectors from a prescribed dictionary. However, it is
often impractical to presume accurate knowledge of the basis,
which motivates data-driven dictionary learning. Moreover, in
large-scale settings one may only afford to acquire quantized
measurements, which may arrive sequentially in a streaming
fashion. The present paper jointly learns the sparse signal
representation and the unknown dictionary when only binary
streaming measurements with possible misses are available.
To this end, a novel efficient online estimator with closed-
form sequential updates is put forth to recover the sparse
representation, while refining the dictionary ‘on the fly’.
Numerical tests on simulated and real data corroborate the
efficacy of the novel approach.

Index Terms—dictionary learning, binary data, online learn-
ing.

I. INTRODUCTION

Most recovery approaches to compressive sensing (CS)
typically assume that sampled measurements have infinite
precision, but observed measurements are always quantized
in practice. Moreover, due to the simple and efficient
hardware implementation of one bit quantizers, there has
been a rising interest in recovering sparse representations
based on binary measurements; see e.g., [2], [6]. Existing
works on one-bit CS, assume that the dictionary is known
a priori. Although certain off-the-shelf dictionaries such as
the Fourier or wavelet bases yield good performance in
several applications, it has been shown that, a data-driven
approach which learns the dictionary from the data can
improve the recovery performance; see e.g., [1], [3] and
references therein. Extensions of the dictionary learning
(DL) paradigm to one-bit measurements have recently been
studied in [5] and [16]. The batch complexity penalized
maximum likelihood estimator was developed in [4]; see
also [16] for a batch iterative algorithm.

In large-scale settings, where new data are often acquired
sequentially in a streaming fashion. For example, in recom-
mender systems, there are millions of ‘like’s and ‘dislike’s
for sequentially released movies, and newly released ones
call for real-time recommendation. Furthermore, acquired
data may contain misses, since e.g., user ratings for a
big portion of movies are missing. In general however,
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most one-bit CS and DL approaches are available for batch
operator, assuming that all data are available beforehand. For
instance, the advocated approach in [16] is not tailored to
handle misses or streaming data. Towards developing online
DL algorithms, the stochastic approximation framework has
been shown useful when measurements are assumed to have
infinite precision [9], [14]. The present paper broadens the
merits of these prior works to binary DL from streaming data
with misses. Specifically, a batch estimator with closed-form
updates will first be developed, and then its online version
that leverages stochastic gradient descent iterations will be
put forth. Both algorithms are provably convergent, and can
explicitly handle and impute misses.

To place this work in context, binary principle component
analysis (PCA), which seeks a lower-dimensional sketch
of one-bit data has been developed in e.g., [8], while its
online renditions have been advocated in [7] and [13].
It is worth noting that binary PCA requires the lower
dimensional representations to lie in the same lower dimen-
sional subspace. However, binary DL is more general in the
sense that it does not enforce this constraint. In fact, the
sparse representations are allowed to have varying sparsity
patterns. Naturally, binary DL has the potential to reveal
sparse representers of different subspaces, thus subsuming
inference tasks such as subspace clustering. DL using one-
bit data is also useful for binary classification problem with
intentionally or unintentionally missing features.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the high-dimensional M x 1 vectors {y, €
{—1,1}M}T_, corresponding to sign measurements

(D

where {s, € RV}T_, are sparse vectors with K < N
non-zeros entries, and n, captures unmodeled dynamics,
while D € RM*N denotes the unknown dictionary. Sup-
posing that some measurements are missing, let Q. C
{1,..., M} denote the index set of available measurements
at time 7, with |Q,| < M. For instance, in recommender
systems {yi:}icq, represent the available binary ratings,
namely, “like” or “dislike”). In binary classification prob-
lems, {y;r, i € Q,;}1_, corresponds to the available labels.

Given possibly partial observations {y;,, i € Q,}1_,,
the goal of the present paper is to recover {s,}Z_; and
D. So that the missing entries can be imputed and ensuing

vy, = sign(Ds; +n;)
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inference tasks such as subspace clustering can be carried

out based on {s,}. Based on (1), the i-th entry of y., is
icQ, )

where d, denotes the ith row of D. If ny ~ N(0,021),
the entry-wise likelihood function can be written as

{(yir; di,sr)
Yigtl
= [Pr(nir > —djsr)} 7 Pr(nir < —d/'s;)
Yirt1
@ (—diTsT/a”)] 2
= Q (—yud{s; /o) 3)

where ((-) denotes the standard Gaussian tail function, see
e.g., [11], [13]. With S := [sy,...,sr], the log-likelihood
of the available binary data can be written as

logﬁ({ym i€ QT}Z=1;D,S>

T
- Z Z log £(yir; diysr).

T=11€Q,

Yir = Sign(d;rsr + ni‘r)7

11—yt
2

—Yit

[Q(d] s, /on)] *

“

Since s, is sparse, a natural regularizer to promote sparsity
is the £p-norm, which counts the number of non-zero entries.
However, minimizing an {y-norm penalized cost incurs NP
complexity, and contemporary approaches resort to the /;-
norm as the closest convex relaxation. To this end, one is
motivated to minimize the regularized log-likelihood

T
D,S) + A -l
T=1 (5)

where ||s;||1 = Zf\il |sir|, and the constraint set D :=
{D € RM*XN + |d;|ls <1, Vi = 1,--- , M} prevents
the entries of D from taking on arbitrarily large values.
If D were unconstrained, one would run the risk of trivial
solutions, with s, approaching O due to the ¢;-norm regular-
izer. Furthermore, since the sign operator in (2) suppresses
magnitude information, there is no loss of generality by a
fortiori setting ||s||2 = 1, V7. This justifies constraining
the matrix S to the set S := {S € R¥*T : |s.[]2 <
1, Vr=1,...,T}.

For moderate values of M and T', one can devise a batch
alternating minimization (AM) scheme if the entire dataset
is available. This is tantamount to alternately minimizing (5)
with respect to (w.r.t.) D while holding S fixed, followed by
minimization of S with D fixed, in an iterative manner until
convergence is attained. Note that (5) decouples over both
and 7, and the resulting subproblems involve minimization
of (y;+;d;,s¢) wrt. i and 7. Each subproblem does not
lead to a closed-form solution, and one must resort to itera-
tive approaches (e.g., gradient descent). This is challenging
in big data settings, when M and 7T are large, and y, may
be acquired sequentially in a streaming fashion (T' — c0).
In this case, a real-time algorithm for solving (5) is well
motivated, and iterative solvers that must attain convergence

min

-1 E( . e QT .
Db Ses og {yz,‘raze e

per acquired datum are impractical. In order to process
streaming data, the sequel will first introduce an efficient,
provably convergent batch algorithm, based on a modified
objective function. An online rendition of the algorithm, that
adopts first-order stochastic gradient descent iterations will
then be developed to process large-scale streaming data.

III. BINARY DICTIONARY LEARNING

A. One-bit batch algorithm

Further inspection of ¢(y;;,d;,s;) in (3) shows that it
is a monotonically increasing function of yitdjst. Conse-
quently, y;:d, s; can be adopted as a metric that capturing
how well y;; is represented. Based on this observation, one
is motivated to solve the following optimization problem

T

S wird]se + As- |

T=1 1€Q
(6)

instead of (5). Even though (6) is not equivalent to (5), it can
be shown that if D is available, then solving (6) w.r.t. S can
yield reliable reconstruction performance under reasonable
conditions [17].

Note that (6) is block multi-convex [12] w.r.t. to D and
S, that is, it is convex w.r.t. one block of variables when
the others are fixed. Block multi-convex problems can be
solved using a block coordinate descent (BCD) iteration,
with convergence guarantees to a stationary point [15]. The
present paper advocates BCD iterations, which amount to
the following updates per iteration k.

]j S = i
{D,S}=arg | min_

[Z _yird?[k — 1sr + Alls-[l1

T
S[k] := i
[k] := arg min > 2

T=1

(7a)

T
D[k] :=argmin > > —yird, s [K]. (7b)

t=14ieQ,

Note that (7a) is separable across columns of S, with the
corresponding subproblems admitting closed-form solutions

0, Dk — 1yl <A
o[ { ID[ izl
(8)

Py (D [k—1]y) _
TP DFE-1 52’ otherwise
where ¥, == [f1rs ..., Ga0r] T € RM with §isr = yir,Vi €
Q, otherwise g;» = 0; while the entry-wise operator Py (-)
is

0, if z< A\
PAz) = { sign(z)(|z] — A), otherwise. ©)
Similarly, (7b) is separable across rows of D; that is,
T
d;|k] = arg min fgj”d;-rsq, k (10)
14 deHSlTZ:1 %]
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Algorithm 1 One-bit batch dictionary learning algorithm

Algorithm 2 One-bit online dictionary learning algorithm

input: {y;}7_,, A
initialize: D|0)
for k=1,2,... do

(S1) For 7 =1,--- , T, update s, [k] via (8).
(S2) Dictionary refinement via (11).

end for
return D = DJ[k]

which leads to the following closed-form solution

T ~
_ ZT:I _yi‘rs‘r[k]
= - - .
122721 —Tirs- (k]2
Algorithm 1 summarizes the developed batch iterative
scheme for dictionary learning from binary data.

d;[k] an

B. One-bit online algorithm

In order to attain real-time operation for large-scale
streaming settings, this subsection deals with data that are
acquired sequentially. To this end, recast (6) to minimize
the following expected cost per ¢

Isni]IDl E {gt ({yit}iem 3 St D)} (12)
where
gt({yi,t}ieﬂt?staD) = Z yud] s+ Alsillx

icQ,

and expectation in (12) is taken w.r.t. the unknown prob-
ability distribution of {y;;}. To solve (12), one can ap-
proximate the expectation as E {g;({yi}ica,;s:, D)} =~
(1/t) Zizl {9-({yir }ica,;s:,D)}, which accumulates
all past data up until ¢. Instead the simple instantaneous
approximation

E {g:({yit}ica,;s6, D) } =~ gt ({wit yica,;8:, D) (13)

which discards all past data and leads to computationally
affordable updates.

Minimizing (13) per ¢ can be accomplished via AM
iterations along the lines of [13], with the iteration index
coinciding with ¢. This scheme comprises two steps per t,
upon acquisition of {y;:}icq,. First, the sparse vector s;
is recovered from the incomplete binary measurements, by
solving

(SD 8 = arg min g, ({yihicoiis, Dia)  (14)
with D set to the most recent update D, ;. Step (S1) entails
convex minimization which admits the closed-form solution

0, D 1Felloe < A
PX(D:—1S’t)
HPA(]AD:flS’t)Hz’

St =

1
otherwise. (as)

In the subsequent step, the dictionary is refined based on

input: {y,}7_,, X
initialize: D,
fort=1,2,...7T do

(S1) Sparse coding: Update s; via (14).
(S2) Dictionary refinement: Update ljt via(16).

end for A .
return D = D,

S¢, by a single projected stochastic gradient descent (SGD)
iteration given by
(82) D = projp, (Di-1 — 1:Vpg: ({yi.}ico,:8:.D) )
(16)

where (i, is the step size. The projection operator projp(-)
is available row-wise in the closed-form

projD(di) = di/maX{Hdng, 1} (17)
while the gradient can be readily found as
Vpfi(81,D) = —¥:8/ . (18)

Algorithm 2 summarizes the developed online scheme based
on SGD iterations.

Remark 1 [Computational cost]. The dictionary update
in Algorithm 2 is parallelizable, while the sparse signal
recovery admits closed-form updates. Indeed, the developed
online algorithm entails computationally affordable itera-
tions, which scale to large datasets.

Remark 2 [Convergence]. As mentioned earlier, the objec-
tive function is block multi-convex, hence the convergence
analysis in [9], [10] can be adopted to establish asymp-
totic convergence of Algorithm 2 under certain conditions
(skipped due to space limitations). Nevertheless, extensive
numerical tests presented in Section IV, empirically confirm
convergence of the online algorithm.

IV. NUMERICAL TESTS

This section assesses the recovery performance of the
developed algorithms on both simulated and real data.

A. Synthetic data

With M = 200, N = 100 and K = 3, the support set of
the K -sparse signal s; is chosen randomly, with nonzero en-
tries drawn independently and identically distributed (i.i.d)
from a standard Gaussian distribution. Matrix D € RM*N
is randomly generated with entries sampled i.i.d. from
the standard Gaussian distribution, and each column is
normalized to have unit norm, while n; ~ AN(0,1074I).
The algorithms are initialized with D[0] = D + E, with
[El;; ~ N(0,2.5 x 1072). Furthermore, 7" is allowed to
vary between 50 and 300.

Setting the stepsize to a constant i = 0.1 in Algorithm 2,
the developed binary dictionary learning (BDL) algorithms
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(“Online-BDL” and “Batch BDL”) are compared with the
fo-norm regularized binary dictionary learning algorithm
in [16], henceforth referred to as “BDL2”. In order to
demonstrate the benefit of data-driven dictionary learning,
performance comparisons are also drawn with binary itera-
tive hard thersholding (BIHT), without dictionary learning
(henceforth referred to as “BIHT-W”) [6].

Figure 1 plots the normalized mean-square error (NMSE)
defined as NMSE := 20log (ulxxlF - H;HF D for the
different algorithms. It is clear that learning the dictionary
from the data yields improved recovery performance. In
addition, the developed algorithms markedly outperform
BDL2, while online-BDL exhibits comparable performance
to its batch counterpart.

—+—Online-BDL
| - + - Batch-BDL
BDL2

ot BIHT-W

NMSE(dB)

Fig. 1: Training NMSE (dB) vs. T'.

Figure 2 depicts the training runtime in seconds against
T, confirming that the developed batch algorithm is faster
than BDL2 by at least an order of magnitude, thanks to the
closed-form updates per iteration. Furthermore, online-BDL
is faster than the batch-BDL as expected, which is quite
appealing for processing streaming large-scale data.

Based on the computed D from the training phase,
reconstruction performance on 100 test data samples is
also examined. The test data are generated using the same
dictionary, under the same noise statistics, and only their
signs are maintained. The sparse representations are then re-
covered via (15) based on D. From the NMSE performance
illustrated in Figure 3, it is clear that even though BDL2
performs well on the training set, it does not perform well
on the test set. In comparison, the developed algorithm still
yields a consistent advantage in the test set too.

Finally, convergence performance of Online-BDL is
tested. The norm of the gradient of the running average
[I(1/t) 23:1 Vs ({yii}ica.;se, D)||r is plotted against
the iteration index as illustrated in Figure 4, which shows
that the proposed online algorithm converges in about 50
iterations.
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-+ -Batch-BDL
o BDL2
e BIHT-W ik
Qe P :
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O sl
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1072 . . . .
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T
Fig. 2: Training time (sec) vs. 7.
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Fig. 3: Testing NMSE (dB) vs. T.
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Fig. 4: Running average of gradient vs. t

B. MNIST data

The novel online algorithm is also evaluated on the
MNIST dataset of handwritten digits. Four subsets of the
data are randomly selected with 7" = 100 image patches
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corresponding to the numbers “1”, “6”,“7”, and “9.” Each
image of dimensions 28 x 28 is vectorized to form s; € RY
with N 784, and then multiplied by D € R5VXNV
generated as described in the previous subsection. The
result is contaminated with additive Gaussian noise n; ~
N(0,107I). For BDL2, the maximum number of nonzero
entries of x; is known from the dataset. Table I lists the
reconstruction performance in terms of NMSE, as well as
the training runtime of the developed online approach and
BDL2. To highlight the benefit of learning the dictionary,
NMSE performance of “BIHT-W” is also included. Table I
shows that the reconstruction performance improves through
a data-driven approach for learning the dictionary. Further-
more, the developed online algorithm outperforms BDL2 on
all four sets of data with respect to the NMSE metric.

With respect to scaling to large datasets, it is clear that the
developed online algorithm outperforms BDL2, as demon-
strated by the runtimes listed in Table I. Figure 5 visually
compares the reconstruction performance of the different
algorithms on images of the digit “6”. Indeed, the developed
approach yields a markedly improved reconstruction as seen
from the higher visual quality in comparison to the rest.

| BDL-online BDL2 [16] [ BIHT-W
No. || runtime | NMSE | runtime | NMSE | NMSE
1 22.32 | -11.08 | 506.93 | -7.85 -7.68
6 21.51 | -7.04 | 49490 | -6.33 -6.25
7 21.78 | -7.39 | 49546 | -6.93 -6.88
9 22.12 | -6.64 | 49436 | -6.23 -6.14

TABLE I: Runtime (sec) and NMSE (dB) comparison for
MNIST dataset with N = 784, M = 3920, and 17" = 100.

BDL-online
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Fig. 5: MNIST image reconstruction test.
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V. CONCLUSIONS

A novel provably convergent online approach was
introduced for jointly recovering the sparse signal and
learning the dictionary from large-scale binary data.
Simulations on both synthetic and real data were carried
out to corroborate the effectiveness of the proposed
algorithm. To broaden the scope of this study, there are
several intriguing directions to pursue, including: (a)
convergence analysis of the iterative algorithm; and (b)
leveraging kernels for dictionary learning in nonlinear
settings.
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