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Abstract—In this paper, it is shown that the Power Spectral
Density (PSD) of late reverberant speech can be described by
a first-order Infinite Impulse Response (IIR) model with the
pole related to the reverberation time. Utilizing this first-order
IIR model, an online method for reverberation time estimation
(RTE) from a recorded reverberant signal is proposed. The
proposed method takes advantage of processing in subband
domain in order to reliably estimate the reverberation time in
noisy environments. Comparing with a well-known maximum
likelihood approach for RTE, the superior performance of the
new approach for fast tracking of RT with higher accuracy is
demonstrated.

I. INTRODUCTION

The energy of a reverberant sound field in a room decays
exponentially with a specific rate related to a parameter that
is called Reverberation Time (RTgq). It is defined as the time
interval in which the energy of the reverberant sound field
decays 60 dB below its initial energy level after switching-off
the excitation source [1]. Knowledge about RT is employed
significantly in speech dereverberation techniques [2] and is
also of interest for acousticians in architectural design of
auditoriums and large chambers.

Some methods determine the RTyy parameter of an en-
closed environment based on explicit equations related to the
room geometry and absorptive properties of the objects in it
[1]. In addition, RTgy can be estimated from the slope of a
measured Room Impulse Response (RIR) by scattering either a
burst of noise or brief pulse into the test enclosure [3], [4]. The
measurement-based methods require careful experiments and
suitable excitation signals. Besides, these offline methods are
less practical as we encounter time-varying R7go. Generally,
entirely blind methods are preferred that work without having
any prior knowledge of the received signal, room geometry
and the absorptive characteristics of the objects. A well-known
method in this category is [5] which estimates the reverbera-
tion time by a Maximum Likelihood (ML) approach. This ML-
based approach [5] was extended in [6] for reverberation time
estimation from noise-corrupted reverberant speech signal.

In this paper, we present a novel online reverberation
time estimation method that can be employed in intelligibil-
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ity improvement algorithms of Public Address (PA) systems
where the original clean speech is available. In [7], a noise
PSD estimation algorithm has been proposed for reverberant
enclosures assuming that the reverberation time is known.
Utilizing our proposed RT estimation method here, the noise
PSD estimation approach [7] can be generalized to the case
of unknown reverberation time.

To perform RTE, we utilize a new formula for the PSD
of late reverberant speech [7]. In contrast to the approach
[6] that use a time-domain model for the reverberant speech
within the pause intervals, the derived PSD-domain model
holds for any arbitrary segment of the reverberant speech.
Through fitting the theoretical reverberant PSD to the observed
PSD, RTyo can be inferred segment-by-segment. Moreover,
the algorithms extracting R7go only in the free decay parts
of the reverberant speech require a long recorded signal, to
provide a large number of free-decay parts. In this paper, by
exploiting a segment-by-segment strategy for continuous RTE,
the need for long data record is surmounted and fast tracking
of RTyo would be possible. Furthermore, by performing RT
estimation in the subband domain it is possible to remove the
noise-dominated PSD bins for reliable estimation of RTgo in
noisy environments. We demonstrate that our proposed method
outperforms Lollmann’s approach [6] in both accuracy and
speed of tracking RTg.

This paper is organized as follows. The next section is
devoted to the basic assumptions and observation model of a
recorded reverberant speech. We present the proposed method
in Sec. III. Then, the simulation setup and experimental results
are explained in Sec. I'V. Finally, we conclude the paper in Sec.
V.

II. OBSERVATION MODEL

Assume a clean message is played through a loudspeaker
(source) in a reverberant environment. Let s,  and d denote
the played clean speech, the late reverberant version of s, and
the noise signal respectively. The signal y recorded by the
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microphone at a specified distance from the source is defined
by the following equation

y(n) = as(n —no) + x(n) + d(n), (1)

where n is the discrete-time index, and « and ng are the
attenuation factor and sound propagation delay between the
source and receiver, respectively. Assuming a specified dis-
tance between the source and receiver, ng can be removed to
simplify the model (1). With this zero-delay assumption, the
late reverberant clean speech signal x can be rewritten as

x(n) = h(n — 1) x s(n), )
in which x is the convolution operator and h(n) represents
the Room Impulse Response (RIR). According to the Polack’s
model, a RIR is generated as one realization of the following
stochastic process [7]

h(n) =b(n)e"™n >0, 3)

where b(n) is a zero- mean normally distributed stochastic
process with variance v, which defines the fine structure
of the RIR modulated w1th an exponential function with the
decay rate of . The decay rate is defined by n = ?1,%1;6(01](3) in
which RTgo and f, are the reverberation time and sampling
frequency, respectively. Assuming frame-by-frame processing,
for the " frame and k'" Discrete Fourier Transform (DFT)

bin, we can rewrite (1) in the frequency domain as (ng = 0)

Y (i, k) = aS(i, k) + X (i, k) + D(i, k). (4)

Assuming « and s are known, we can refer to the observed
PSD by Z(i, k) which is defined as

Z(i,k) = Y(i,k) — aS(i, k)

ITII. PROPOSED METHOD

= X(i,k)+ D(i,k). (5

A. Model of the reverberant PSD

Faraji et. al showed that the PSD value of late reverberant
speech at i*" frame and k'" DFT bin is determined by [7]

p—1Lk), (6

in which S(i — p — 1,.) denotes the DFT of a frame which
starts at (i — p — 1) sample index of the clean speech
signal. Also v, N and 7, 4y are time-varying parameters
of the RIR accordmg to the Polack’s model, and N is the
frame length. As the PSD (6) non-linearly depends on the
decay rate parameter, in [8] Faraji et. al utilized a Non-Linear
Least Squares (NLLS) method to estimate the reverberation
time in noise-free reverberant enclosures. Due to the high
complexity of running NLLS method in each frequency bin,
in this paper we simplify the proposed model of (6) to reduce
the computational burden of estimating reverberation time.

B. IIR model of the reverberant PSD

we can rewrite (6) as

ox(ik) = v nS*(i—1,k)
2
+ Y METSAi—p—1 k), (D)
p=1

By change of variable ¢ = p — 1, we can simplify (7) as

o%(ik) = v xS*(i—1,k)
> 2 +1
SR e RS2 (g2 ) (8)
q=0

Assuming that the parameters of RIR are time-invariant, we
can remove the subscript ¢ + N from /2 A and 7, e Finally,
we can rewrite (8) as follows

Ug{(iv k) -

(oo}

+ e Z vie 216 (j —
q=0

= e g% (i—1,k) +2S%(i — 1,k). (9)

v2S2%(i —1,k)

q_27k)

To be practically tractable, the summation in (6) is limited
to an upper bound which corresponds to considering a finite
length RIR. For a limited upper bound Q, we obtain (10) in
place of (9)

ox(i,k) = e o%(i—1,k)+v°S%*(i—1,k)
v? e 2@ 82— Q — 2, k).

Meanwhile, assuming that () is large, which is a plausible
assumption for RIRs, we can discard the last term in (10).
To summarize, we showed that the time sequence of late
reverberant PSD points in each DFT bin can be modelled by
a first-order IIR with e~2" as the pole location.

(10)

C. Decay rate estimation method

Let us consider a short-time segment of late reverberant
speech which starts at n*” discrete-time index with the length
of N samples, i.e., {z(n),z(n+1), ...,z(n+ N —1)}. This
segment is divided into the frames of L samples (L < N) and
the frame shift of a single sample. We denote the PSD points
of m!" frame in the segment by 0% (m, k) for 1 < m < M.
According to (9), the decay rate estimate can be obtained as

n(j) = mgn f(n,3), (11)
where f(n,j) is the objective function to be minimized
Np/241 M
>3 (2
k=1 m=2
e(m, k) = 0% (m, k) —e 0% (m — 1,k) — v2S*(m — 1, k),
(12b)
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in which Np is the number of DFT coefficients and j is the
segment number. Taking the deriviate of (12a) with respect to
7, 7(j) would be

—+1 M
> ox(m—1,k) [o%(m, k) — v*S*(m — 1, k)]
k=1 m=2 (}3)
NTF-H M
> ok (m—1,k)
k=1 m=2

Although, the expression in (13) can simply determine the
7 parameter, in application rather than the true PSD, only
an estimate of the PSD of reverberant speech, i.e., 6% (i, k)
is available. It is well known that the Least Square (LS)
estimate of the coefficient in a first-order difference equation,
like (9), is severely downward biased for the coefficients
near to one [10]. The same situation happens for typical
values of the reverberation time where the coefficient (e ~2")
is near to one. To surmount the challenge of the estimation
noise in the observed PSD, first the primary decay rates of a
number of J consecutive segments are estimated by (13). The
secondary decay rate estimate of the j** segment is obtained
by inferrring some statistics, for example median or mean,
from the histogram made by the primary estimated decay
rates, i.e. Tpri(J), Mpri(j — 1), ..., fpri(j — J + 1). Finally, the
secondary estimate is smoothed using a first-order recursive
averaging filter with the time constant of 0.996 to form the
final decay rate estimate

Nein(J) = 0.9960 i (5 — 1) + 0.0047)5cc(4)-

Although this approach can remove the spurious estimates,
taking advantage of adaptive filtering permits us to more effec-
tively reduce the severely-biased estimates, experimentally we
found. Indeed, an adaptive strategy for parameter estimation
leads to the estimation noise of 0% to be smoothed and the
estimation procedure to have a stable behaviour. Employing
a gradient based method to minimize the objective function
(12a), we can update the j** estimate of the 7 parameter as
follows

(14)

m=M Nr/2+1 e(m, k)

A =G -1 =2p Y > e(m, k) =5 =

m=2 k=1

5)

in which 2080 — 9¢=216% (m — 1,k) > 0 and pu is the
learning rate. The following modified version of (15) is used
in this paper

m=M Nr/2+1

g X

The first modification, which is normalizing the learning rate
w by v?Var{s(n)}, is similar to the approach used in the
Normalized Least Mean Squares (NLMS) method to have
a constant learning rate p for all power levels of an input
signal. Moreover, experimentally we found that using the sign
of the derivative term (ae) instead of its value caused the

2 Var{s(n)} Var{s - (16)

adaptation algorithm (15) to be more stable. Therefore, the
second modification is replacing the error derivative by its
sign, which is similar to the approach used in the sign regressor
version of an LMS algorithm [11] to increase stability. By
using this strategy, we can also reduce the computational
complexity of the adaptation equation (15). The secondary and
final decay rate estimates are obtained by the same formulas
as mentioned before.

D. Decay rate estimation from noisy reverberant speech

For a noise-corrupted reverberant speech, 6% is replaced

with the observed PSD 67 in (12b). The highly noise-
corrupted PSD points for computing the objective function
(12a) can lead to a large error in the 7 estimates. More
accurate estimates can be obtained by incorporating the a
priori Signal to Noise Ratios (SNR) for the PSD points. Then,
only those PSD points having a priori SNRs greater than a
predefined threshold (SN R;;,) are employed for the estimation
procedure. The a priori SNR of the (m, k)" PSD point is

defined by snr(m, k) = 10log;, Ué(E:zI :;

is an estimate of the noise PSD and 6% (m, k) is defined by
(6). However, the exact value of 6% (m, k) is unknown, as it
depends on the uncertain decay rate 7 to be estimated. Hence,
using a rough estimate of 6% (m, k) the approximated a priori
SNR parameter, asnr, is defined by

Zp o ' 1282(m—p—1)

asnr(m, k) = 10log;, 3R ,

in which 6% (m, k)

a7

in which P is the length of RIR. The nominator in (17)
is 6% (m,k) excluding the exponential term e~27", so the
approximated a priori SNR, asnr, is always greater than the
snr value. Taking into account the aforementioned idea, the
objective function (12a) is modified as

Ze (m, k).

(m,k)e{(ma,ka)|lasnr(ma,ka)>SNRp }
IV. SIMULATIONS AND EXPERIMENTAL RESULTS

A. Simulation setup

fasnr(0,7) (18)

The experimental results are reported on an anechoic
speech signal constituting 6 speech files from TIMIT
database with the sampling frequency of 8 kHz (17-sec
speech signal). To simulate the late reverberant speech signal,
first we generated 6 synthetic RIRs using Polack’s model
with 2 = 0.1, and RTg = (0.1,0.2,0.4,0.6,0.8,1) s. In
addition, we used 10 measured RIRs from Aachen Impulse
Response (AIR) database [12]. The selected RIRs from
AIR database constitute 5 RIRs used in the evaluation in
[6] plus 5 additional ones. The reverberation times of these
RIRs, measured by the Schroeder method [4], are RTgy =
(0.39,0.64,0.315,0.87,1.096, 0.273,0.536, 0.33, 0.86, 1.05)
s. In our proposed method, we assume the variance parameter
in Polack’s model, v2, to be known. Hence, first we estimate
the variance v? from the recorded RIRs and then apply the
estimated variance into the reverberation time estimation
procedure.
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Fig. 1: RTgp+ Mean absolute error at different noisy conditions (a) white noise, (b) modulated-white noise, (c) babble noise,

and (d) non-stationary train noise.

The obtained 12 estimates for the recorded RIRs are v? =
(1.3,1.6,2.45,1.32,0.00018,1.5,1.13,2.51, 1.84,0.00027) x
10~%. The reverberant speech signals are contaminated by
white noise, modulated white noise with the setup as in [13],
babble noise and non-stationary train noise at a SNR level
between 0dB and 20dB. Our experimental results indicated
that the best performance is attained at N = 1024 with
the segment shift of 3 ms, J = 500, SNRy, = 20 dB,
and inferring the mean statistic from the histogram of the
primary decay rates. Each segment is partitioned into the 128-
sample frames weighted with a Hamming window and 127-
sample overlaps. Moreover, two more true 7 is considered as
the initial estimate and the ;o parameter is set to 3 x 1077.
The corresponding reverberation time estimate is calculated by

RTe0(j) = nim% We measure the estimation performance
using mean absolute error as follows
1 Nseg .
Mean absolute error = —— ‘RTﬁo(j) — RTgo|, (19)
seg 21

where |.| represents the absolute value operator, NV,., denotes
the total number of segments, and RTyo and RTy represent

the true and estimated reverberation times, respectively. Fi-
nally, the relative error is determined by

Mean absolute error

To calculate the asnr to be compared with SN Ry, a method
to provide a rough noise estimate has been employed which
estimates the PSD of noise during the initial silent interval of
the reverberant speech.

x 100%. (20)

Relative error =

B. Experiment 1

In this experiment, we evaluate the performance of our
proposed method at different stationary or non-stationary noise
types with variable SNR levels. In each sub-figure of Fig. 1,
the true RT value has been plotted as a solid line. The distance
of each line with the markers from the solid line shows the
Mean absolute error. As it is clear from this figure, although
a rough noise estimate has been employed to calculate the
asnr, the performance degradation is not considerable for low-
SNR compared to high-SNR cases. Indeed, by performing RT
estimation in the DFT domain the low-SNR PSD points could
be simply removed from the RT estimation procedure. As illus-
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trated in Fig. 1, performance degradation is not considerable
for the low-SNR case compared to the high-SNR one. Our
approach is similar to the recently proposed method [9] where
the full-band RT of a clean reverberant speech is estimated
from the subband derived RTs. However, this approach, which
estimates the RT values just in the free-decay parts of the
reverberant speech, is expected to fail for low-SNR conditions,
as the free-decay parts of the reverberant speech are the most
spurious parts. In our method, utilizing a general model for the
PSD of reverberant speech, the high-SNR PSD points could
be employed for RTE.

C. Experiment 2

To show that our approach is able to eliminate the need for
a long record of reverberant speech to infer the RT value, we
compare our method with the one proposed by Lollmann et.
al. [6]. The modulated white noise is used to contaminate the
reverberant speech signals at the two SNR levels of 15 dB and
5 dB. The average of mean absolute errors over 16 different
reverberant speech signals at two-second intervals are shown in
Fig. 2. As it is demonstrated in Fig. 2(a), our approach has the
highest error in the first interval. As the time elapses, the mean
absolute error reduces and remains approximately constant.
More or less the same phenomenon is observed in Fig. 2(b)
except in the fifth and sixth intervals during which the error
increased. The intervals segmental SNR values at the global
SNR level of 5 dB are 2.4, 7.3, 3.2, 9.3, -1.8, -3.9, 5.4 and
8 dB, respectively. In fact, the performance degradation has

been occurred within the low-SNR intervals of the reverberant
speech. In comparison, Lollmann’s method has demonstrated
a reasonable performance at the SNR level of 15 dB, Fig.
2(a). However, since this method estimates the RT during the
free decay regions, a significant performance degradation is
observed in all intervals of Fig. 2(b) which corresponds to the
low-SNR case.

V. CONCLUSION

In this paper, we showed that the time sequence of late-
reverberant PSD in each DFT bin (temporal envelope) follows
a first-order difference equation. Using this first-order model,
in which the unknown coefficient is related to the reverberation
time, we were able to continuously extract reverberation time
from the recorded reverberant speech. The performance of
our proposed approach was evaluated in four noisy condi-
tions. By exploiting subband processing and removing highly-
contaminated PSD points, a small degradation in performance
was observed for the low-SNR cases in comparison with the
high-SNR ones. Moreover, our continuous estimation approach
demonstrated a superior performance for the online estimation
of RT only with a few seconds of the reverberant speech signal.
As a suggestion for the future work, our algorithm can also
be extended to the estimation of v? parameter.
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