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Abstract—This paper presents an unsupervised approach to
vocal detection in music recordings based on dictionary learning.
At a first stage, the recording to be segmented is treated as
training data and the K-SVD algorithm is used to learn a dic-
tionary which sparsely represents a short-term feature sequence
that has been extracted from the recording. Subsequently, the
vectors of the feature sequence are reconstructed based on the
learned dictionary and the probability of appearance of the
dictionary atoms is estimated. The obtained probability serves
to compute the value of a weight function for each frame of
the recording. The histogram of this function is then used to
estimate a binarization threshold that segments the recording
into vocal and non-vocal segments. The performance of the
proposed unsupervised method, when evaluated on two datasets
of accompanied singing, presents comparable performance to
supervised techniques.

I. INTRODUCTION

Singing voice detection or vocal detection, abbreviated
SVoD in this paper, refers to the task of detecting automatically
the segments of a music recording where the singing voice is
present. The singing voice is the central element in various
music genres and, consequently, a reliable SVoD method can
be a key component for a number of tasks in the field of Music
Information Retrieval (MIR), including singer identification,
singing melody transcription, lyrics alignment and structural
segmentation, to name but a few.

Prior research has mainly approached SVoD as a binary,
supervised classification task ([1], [2], [3], [4], [5]. [6], [7],
[8], [9]). In these methods, a model is first trained on features
extracted from an annotated corpus and the model is then
applied to classify each frame of an unknown recording to
the voiced or unvoiced class. To this end, the discriminative
capability of various features has been investigated, including
spectrally derived low-level representations (MFCCs, LPCCs,
PLPs, LFPCs) and more elaborate features, like the pitch
contour, vibrato, tremolo and signal envelope. On the other
hand, unsupervised approaches have been rare. Specifically,
the work in [10] presents a method for discriminating among
vocals and static accompaniment based on the fluctuation of
harmonic partials and the method in [11] estimates vocal
sections by tracking the presence of vibrato in the harmonics
of the spectral representation of the signal.

In this paper, we present an unsupervised SVoD method
based on Dictionary Learning (DL). DL is directly related to
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the sparse representation/sparse coding tasks, the objective of
which is to choose a few elementary signals/vectors, called
atoms, drawn from a pre-specified set, referred to as dictionary.
This dictionary provides a data-aware compact representation
of a data set in terms of the atoms. The popularity of DL
methods in diverse application contexts has also been reflected,
within a certain extent, to tasks related to MIR and signal
processing for music. For example, DL methods have been
employed to yield sparse representations in the context of
source separation [12], genre classification [13], [14], [15],
music annotation/retrieval [16], multi-pitch analysis [17] and
music transcription [18], [19], [20].

The novelty of our approach lies in the fact that the short-
term feature sequence representing the signal to be segmented
is treated as unlabelled training data which are used to learn,
in an unsupervised mode, a small dictionary using the well
known K-Singular Value Decomposition (K-SVD) algorithm
[21]. The learned dictionary is then employed to reconstruct
the original short-term representation. The resulting sparse
reconstruction matrix reveals the probability of appearance of
each dictionary atom over the entire reconstructed recording
and therefore, the atom’s respective information content. Every
atom combination that reconstructs a short-term feature vector
is then mapped to a positive value based on a scheme that
weights the information content of the participating atoms
with the normalized intensity of their contribution in the
reconstruction of the frame. The histogram of the resulting
function over the short-term frames exhibits peaks and valleys
and is used to compute a global threshold based on the Otsu
method from the field of image analysis [22]. This threshold is
subsequently used to binarize the feature sequence. Therefore,
the proposed approach circumvents the need for a training
stage on previously annotated data. Our experiments on two
datasets of accompanied singing have shown that despite its
unsupervised nature, the proposed method is competitive to
supervised approaches.

The paper is structured as follows: Section II presents
the DL methodology, Section III describes the segmentation
stage and Section IV presents the experimental setup and
the respective performance evaluation. Finally, conclusions are
drawn in Section V.
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II. DICTIONARY LEARNING

Let D be a dictionary matrix comprising r dictionary
atoms, dq,--- ,d, as columns. Dictionary learning refers to
the estimation of D via an optimization task which is often
formulated as follows [21], [23], [24]:

min || X = DB [|g, st ||bj [[o<k, j=1---N, (1)

where X contains the training vectors (x;, ¢ = 1...N)
as columns, || - ||r is the Frobenious norm, || - ||o is the {g
pseudo-norm counting the number of nonzero components of
the unknown vector b; and £ is the number of atoms, which
are linearly combined to represent each training vector. More-
over, a constraint on the dictionary norm is necessary in order
to avoid degenerate solutions, with the unit-norm request for
each atom being the most popular. In this paper, X comprises
a set of [-dimensional feature vectors that have been extracted
from the music recording using a short-term feature extraction
scheme. We experimented with the bark band representation
of the spectrogram of the recording and the well known Mel
Frequency Ceptrum Coefficients (MFCCs). Details are given
in Section IV.

The dictionary is usually trained in an iterative fashion,
alternating two learning stages until convergence. In the first
stage, the dictionary D is fixed to its latest estimate and B
is estimated, column by column, via a series of sparse coding
tasks, i.e.,

min || x; — Dbj [|* st [[b; [o<k, j=1-N (2

In the second stage, the dictionary is updated, whereas on
the same time, either the full matrix B, or its zero entries
only, are kept fixed, depending on the specific DL method.
One of the most popular and well-performing DL methods, the
K-Singular Value Decomposition (K-SVD) [21], updates the
dictionary atom by atom via a series of rank-1 approximations
performed via truncated SVD.

The power of dictionary learning lies in the fact that
all the training data vectors are “forced” to be represented
with only a few, in particular k, dictionary atoms. As a
result, the dictionary atoms are rendered highly informative,
grasping the “essence” of the available training examples set.
After the learning phase, any unseen vector, a, which shares
similar structure and/or characteristics with all or a subset of
the training vectors, can be sparsely represented as well. In
particular, the k-sparse representation of a is computed via

B::mgnua—DbH st. || bllo<k, 3)

The certain atoms used for its representation carry important
information regarding its intrinsic characteristics.

III. SINGING VOICE DETECTION

Having assumed a feature sequence of N, [-dimensional
feature vectors at the output of a feature extraction stage, a
dictionary, D, of r atoms and a full matrix, B, of k-sparse
representations (columns), we define a new matrix, F', such

that Fy; = 1 if B;; # 0. In other words, the j-th column of
F has ones on the rows that correspond to the k£ atoms that
reconstruct the j-th frame. Matrix F' can be readily used to
compute the frequency of appearance of the i-th dictionary
atom after the reconstruction procedure has been completed.
In the sequel, we will treat this frequency as the probability of
appearance, p;, of the i-th dictionary atom, d;,z = 1,...,r,

computed as N
p- _ Zj:l F(Zaj)
L r N ..
Dizt Zj:l F(i, j)

It follows that the information content, H;, of the ¢-th
dictionary atom, is

“4)

H; = logs— 5)
1
We then compute a function value, s(j),j =1,..., M, for
each feature vector, by weighting the information content of
each one of the k atoms that participate in the reconstruction
of the vector with a weight that represents the intensity of the
atom’s contribution:

>ie1 | B(i,4) |
where | . | stands for the absolute value. In this equation,
% is the weight of the ¢-th atom during the recon-
struction of the j-th vector.

The values of s are then smoothed with a median filter
(1s long) and their histogram is computed using a predefined
number of bins (256 bins in our study). An example of the
histogram of the resulting smoothed sequence is shown in
Figure 1.
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Fig. 1: Histogram of smoothed sequence, s, for the first music
recording of the “Cante-100” collection [25], using a 3-sparse
representation and a dictionary of 64 atoms to reconstruct the
bark band representation of the spectrogram of the recording.

It can be seen that although the histogram exhibits several
peaks and valleys, an area of low values can be observed
around value 5.5. This area separates the histogram in two
parts.

We therefore make the assumption that the left part of
such a histogram corresponds to frames from the background
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(accompaniment) of the music recording and the right part to
the frames of the singing voice. To validate our assumption,
we use the well known Otsu method [22], that was originally
proposed in the area of image binarization, to compute a
single threshold, 7}, that serves to binarize each frame of
the feature sequence, i.e., the i-th frame is considered to be
voiced, if s(i) > Tj,. We therefore distinguish the short-term
frames into two classes based on the weighted information
content that they carry, as this is reflected by the probability
of excitation and corresponding reconstruction magnitude of
the respective dictionary atoms. For the example of Figure 1,
the Otsu threshold is 5.505 and the values of Precision, Recall
and F-measure for the class of the singing voice are 96.07%,
94.32% and 95.19%, respectively.

A more complex histogram can be seen in Figure 2. In this
case, the Otsu threshold is 5.737 and the values of Precision,
Recall and F-measure for the class of the singing voice are
93.32%, 77.71% and 84.83%, respectively, i.e., a performance
drop is observed due to a lower recall value, which is, in turn,
due to the fact that the computed Otsu threshold is higher
than desired because the histogram is more complicated with
respect to the observed number of peaks (modalities).
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Fig. 2: A more complex histogram of a smoothed sequence,
s, for the 51st recording of the “Cante-100” collection [25],
using a 3-sparse representation and a dictionary of 64 atoms
to reconstruct the bark band representation of the spectrogram
of the recording.

Note that, the efficiency of our method relies on the fact that,
although the histogram of the computed function may exhibit
several maxima and minima, it is still meaningful to split it into
two parts by means of a single threshold. Understandably, this
is only an approximation and serves to present the potential of
our approach. More sophisticated histogram analysis methods
can be investigated in the future.

IV. EXPERIMENTS

The proposed method has been tested on two datasets
of different timbral characteristics. The first dataset (D)
is the publicly available “Cante-100” collection of 100 fla-
menco recordings taken from commercially available flamenco
anthologies [25]. The collection covers a large variety of

singers and styles and encompasses a total of ~ 6 hours of
audio data. Vocal sections were manually annotated and cover
approximately 55% of the total duration. The accompaniment
instrumentation is limited to the guitar and rhythmic hand-
clapping. Meta-data, audio descriptors and manual annotations
are publicly available at www.cofla-project.com.

The second dataset (D) is based on a playlist of 19 Greek
folk music tracks that are available on YouTube!. The total
duration of Dy is 62.74 minutes. The tracks were annotated
by the authors with respect to the presence of singing voice and
the annotations are available via the COFLA project website?.

In this second dataset, the singing voice is mainly accom-
panied by combinations of violin, lute, sandur and percussion,
of which the violin may take over the main melodic line in
the absence of the singing voice. A common trait of both
datasets is that the texture of accompaniment does not exhibit
abrupt changes throughout the recording from a spectral point
of view. However, there are strong dynamic fluctuations in
the accompaniment and loud sections might even “cover” the
singing voice temporarily.

For the sake of comparison, we have reproduced the su-
pervised method in [6] which is based on trained Gaussian
Mixture Models. In the sequel, we will refer to this method as
Song-2013-GMM. We selected this method because it is based
on the easily reproducible standard approach of Gaussian mix-
ture modelling, while taking into account the fact that despite
the wealth of published approaches on singing voice detection,
publicly available code is still not common practice for this
task. Method Song-2013-GMM was tested using a 10-fold
validation scheme on each dataset. The resulting frame-wise
Precision (Pr), Recall (R) and F-measure (F) for the class
of the singing voice are shown in Table I. The most notable
observation is that performance drops significantly on Do
which can be attributed to the more complex instrumentation
of this dataset.

TABLE I: Performance of the Song-2013-GMM method

Recall (%)
84.78
81.59

F-measure (%)
88.25
82.07

Precision (%)
D1y 92.01
Do 82.56

To evaluate our approach, we performed experiments with
two different features, i.e., the bark band representation of the
DFT spectrum and the Mel Frequency Cepstrum Coefficients
(MFCCs). The latter have been very successful in singing
voice detection compared to other features [2]. We also exper-
imented with the augmentation of the feature space with the
delta coefficients of these features. The feature extraction stage
was executed using a short-term window technique, where the
moving window length and step were set equal to 2048 and
512 samples, respectively, for a sampling rate of 44100Hz.
For the first feature, we used 24 bark bands [26] and for
the second feature, we adopted 13 MFCCs stemming from
a typical filter bank of 40 triangular filters [26]. In all cases,

' www.youtube.com/watch?v=vi4s9mz3ajQ&list=PL725882B55F451A9C
2www.cofla-project.com/eusipco2016/eusipco2016_submission.zip
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we used dictionaries of 32 and 64 atoms with sparsity ranging
from 1 to 8 atoms, to preserve reasonable execution times. It
has to be noted that in this study we are not aiming at reporting
results on a large number of feature combinations. We are
rather focusing on exhibiting the potential of our approach on
accompanied singing, hence the choice of the above features.
Of course, an exhaustive study of features can be the objective
of future research.

Figures 3 and 4 present the adopted frame-wise performance
measures for the case of the bark band feature on the two
datasets. It can be observed that, in general, dictionaries of
64 atoms outperform dictionaries of 32 atoms. Furthermore,
the best performance, both on D; and Ds, is achieved by
a 2-sparse representation and a dictionary of 64 atoms. The
corresponding values of Precision, Recall and F-measure are
shown in Table II. These values demonstrate that the proposed
method is competitive to a standard supervised scheme (Table
I) without the need for a training stage on labelled data.

TABLE II: Best performance of the proposed method with
respect to the F-measure: bark bands, 2-sparse representation,
64 atoms

Precision (%)
Dy 93.95
Do 85.95

Recall (%)
76.95
79.04

F-measure (%)
84.6
82.35

When MFCCs were used, a performance drop was made
evident (see Figure 5). Furthermore, when the feature space
was augmented with delta coefficients, the bark band feature
retained good performance but the performance in the case of
the MFCCs dropped even more, mainly due to poor recall, as
it can be seen in Table III, which contains a summary of the
best obtained results for all dataset-feature combinations.

Table III also reveals that a dictionary of 32 atoms can
sometimes outperform a larger dictionary of 64 atoms but it
has to be noted that the performance difference is marginal be-
cause the whole procedure depends heavily on the position of
a single threshold. In other words, when a histogram presents
several modalities (peaks), small threshold shifts can affect
the recall of the method and more sophisticated thresholding
techniques are needed.

TABLE III: Performance summary of the proposed method.
Boldfaced entries indicate best achieved performance

Feat. P. (%) | R. (%) | F (%) | Dict. size | Spars.
D1 Bark 93.95 76.95 84.6 64 2
Bark+delta 92.10 77.70 84.28 64 2
MEFCCs 85.98 71.01 77.78 32 2
MFCCs+delta | 88.21 65.60 75.24 32 1
Do Bark 85.95 79.04 82.35 64 2
Bark+delta 82.26 80.15 81.19 32 2
MFCCs 62.70 84.60 72.02 64 2
MFCCs+delta | 61.44 47.79 53.76 32 3

V. CONCLUSIONS

We presented an unsupervised signing voice detector that is
based on Dictionary Learning and performs competitively to a

standard supervised scheme when evaluated on accompanied
singing in music recordings. The contribution of our approach
lies in the fact that the data to be segmented are treated
as training data and are used to learn a reasonably small
dictionary. The frequency of excitation of the atoms of this
dictionary, in conjunction with their intensity of contribution
during signal reconstruction, can serve to compute the value of
a weight function for each frame of the signal, the histogram
of which can be used to compute a global threshold for the
binarization of the feature sequence. Our future research will
reveal if a more elaborate analysis of the modalities present
in the histogram can yield better threshold estimates.
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