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ABSTRACT
We propose an algorithm that enhances the number of pixels
for high-speed camera imaging to suppress its main problem.
That is, the number of pixels reduces when the number of
frames per second (fps) increases. To this end, we suppose
an optical setup that block-randomly selects some percent of
pixels in an image. Then, the proposed algorithm reconstructs
the entire image from the selected partial pixels. In this al-
gorithm, two types of sparsity are exploited. One is within
each frame and the other is induced from the similarity be-
tween adjacent frames. The latter further means not only in
the image domain but also in a sparsifying transformed do-
main. Since the cost function we define is convex, we can
find the optimal solution using a convex optimization tech-
nique with small computational cost. Simulation results show
that the proposed method outperforms the standard approach
for image completion by the nuclear norm minimization.

Index Terms— High-speed camera, sparsity, compressed
sensing, image completion, convex optimization

1. INTRODUCTION

High speed cameras, which are capable of capturing images
at more than one hundred frames per second (fps), have
been used in many scenes, such as engineering measure-
ments, especially in the automotive industry, sports training,
or entertainment. High spec products can capture 4.91 mega
(2,560×1,920) pixel images at two thousand fps [1]. A lower
spec product can still capture 436 kilo (1,136×384) pixel
images at 960 fps [2].

The main issue of high speed cameras is the decrease
of pixels when fps increases. For example, the second
one of the abovementioned cameras can capture 1,871 kilo
(1,824×1,026) pixels at 240 fps and 948 kilo (1,676×566)
pixels at 480 fps. The reason of this phenomenon is that time
for storing pixel values is proportional to the number of image
pixels while the increase of fps number decreases the time for
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Fig. 1. (a) Block random selection and (b) its supposed optical
setup. Single pixel (shown by red) is randomly selected from
each 2×2 block.

storing. We aim to keep the pixel number as many as possible
even when fps is a high value. Our idea is that a camera cap-
tures block-randomly selected partial pixels only. That is, an
image is divided into several-pixel blocks and one pixel out
of the block is randomly selected, as shown in Fig. 1 (a). We
suppose to conduct this random selection by the optical setup
shown in Fig. 1 (b), even though we have not implemented
it yet. This is an extended version of the single pixel camera
proposed in [3]. Our goal is to recover the sequence of entire
images from that of the block-randomly selected partial pixel
images with given random selection patterns.

There are lots of research relevant to this sequential image
recovery problem [4–9]. Unfortunately, any of them hardly
fits to the high-speed camera imaging setup. Thus, the present
authors proposed a method that reconstructs images by min-
imizing the sum of ℓ1-norms of sparsifying transform’s coef-
ficients and the difference of adjacent frames under the ob-
servation constraint [10]. Although the method effectively re-
constructs image sequences with mild motions, it could be
defeated by a method without reference to the previous frame
when an image sequence contains lots of quick moving ob-
jects. Thus, we propose a method that can recover a high-
quality images even for such image sequences. Our idea here
is to use the ℓ1-norm of the difference of the sparsifying trans-
form’s coefficients of adjacent frames in addition to that of
the difference of images themselves. Since the problem ad-
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dressed here is an image completion problem or a matrix com-
pletion problem [11–13], we can apply the standard solu-
tion to the problems, i.e., the nuclear norm minimization.
We show by simulations that the proposed method outper-
forms this standard method as well as our previously proposed
method in [10].

The rest of the present paper is organized as follows. In
section 2, we formulate the image reconstruction problem and
define a cost function for the image reconstruction. Section
3 proposes a fast image reconstruction algorithm based on
a convex optimization method. Simulation results are also
shown in this section. Section 4 concludes the paper.

2. SEQUENTIAL IMAGE COMPLETION PROBLEM

Suppose that a fixed high speed camera captures a scene at
a high frame rate and a sequence of images xr ∈ RN (r =
1, . . . ,R) is obtained. Pixels in the rth image xr is randomly
selected so that M pixels are remaining (M < N). Let Ar and
yr ∈ RM be a random selection matrix (M rows are randomly
selected from the identity matrix I of the corresponding size)
and a vector consisting of the selected pixels. Then, it holds
that

yr = Ar xr, (r = 1, 2, . . . ,R). (1)

Note that the random selection pattern in Ar is generated at
every frame, not fixed. Our goal is to estimate the image se-
quence {xr}r=1,...,R from {Ar}r=1,...,R and {yr}r=1,...,R. Because of
the high frame rate and thus high shutter speed, high-speed
camera images are said to be noisy. Nevertheless, we did not
take noise into account because we aim here to reconstruct
the sequence {xr}r=1,...,R. For the same reason, we do not take
blur into account either.

We use two sequence of images throughout the paper.
One sequence, say T, is about a tennis playing scene cap-
tured outdoors by a high-speed camera, Optronis CR450x3,
nac Image Technology [14] at 6,000 fps. The other se-
quence, say B, is about a water balloon bursting scene cap-
tured indoors by the same camera at the same fps. Both
sequences consist of 210 frames of uncompressed 256 ×
256 images. These sequences can be seen from the URL:
http://www.ms.is.ritsumei.ac.jp/HSC. Roughly speaking, the
sequence T contains a small moving object (a ball and racket)
with a still background, while the images in the sequence B
are mostly filled with moving objects (splashing water).

Figure 2 shows the ℓ1-norms of differences of adjacent
frame images (blue curves) and their DCT coefficients (red
curves) in terms of frame number. We can see that, the ℓ1-
norm of the DCT coefficient difference is mostly smaller than
or equal to that of the image difference for the sequence T,
while it is true for the frames between 20 and 45, but not for
the frames other than that for the sequence B. We can under-
stand this tendency as follows: when the moving area in the
image is small, the difference of the DCT coefficient is small.
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Fig. 2. ℓ1-norms of difference of adjacent frames and its DCT
coefficients in terms of frame number.

On the other hand, when the moving area is large, the differ-
ence of the image itself is small compared to the difference of
the DCT coefficients. Hence, by combining these two norms
appropriately, we can achieve high-quality image recovery.
Therefore, we propose to use the following cost function to
recover image sequences:

x̂r = arg min
Ar x=yr

{ ∥Lx∥1+λ1∥x−x̂r−1∥1+λ2∥L2x−L2 x̂r−1∥1 }, (2)

The three terms in the cost function express the following
three priors. The first term means that each captured image
is supposed to be sparse in the sparsifying transformed do-
main. The second term means the difference image between
adjacent frames is sparse. The third term means the differ-
ence between the sparsifying transform’s coefficients of adja-
cent frames is also sparse. The parameters λ1 and λ2 control
the balance between the three terms. By setting λ2 = 0, the
cost function amounts to that used in [10]. We will show by
simulations that the algorithm with the new cost function (2)
outperforms that with the cost function in [10].

3. IMAGE RECOVERY ALGORITHM

The problem (2) can be efficiently solved using a convex op-
timization algorithm. Let S r be a set of x satisfying Ar x = yr.
This is convex. Then, (2) is equivalent to

x̂r = arg min
x∈RN

{ ∥Lx∥1+λ1∥x− x̂r−1∥1+λ2∥L2x−ûr−1∥1+ısr (x)},
(3)

where ûr−1 = L2 x̂r−1 and ısr (x) is the indicator function that
takes value 0 if x ∈ S r, +∞ else. Now, our problem be-
comes the minimization of the sum of the four non-smooth
terms including two composite terms. As is well known,
the proximity operator of the ℓ1-norm term θ∥u∥1 (θ > 0) is
proxθ∥·∥1 (u) = (softThresh(un, θ)) ∈ RN , where

softThresh(u, θ) =


u − θ (u ≥ θ),
u + θ (u ≤ −θ),
0 (−θ < u < θ).

2016 24th European Signal Processing Conference (EUSIPCO)

949



(a) Original image (b) Block randomly selected pixels

(c) Recovery by the proposed method (35.88dB) (d) Recovery referring image difference only [10] (33.24dB)

(e) Recovery by the no reference method (32.93dB) (f) Recovery by the nuclear norm minimization (34.63dB)

Fig. 3. Reconstructed images for an image in the sequence T.

Further, the proximity operator of θ∥x − x̂∥1 is given by
proxθ∥·−x̂∥1 (x) = (softThresh(xn − x̂n, θ) + x̂n) ∈ RN . Obvi-
ously, the proximity operator of the indicator function is the
projection onto S r. Since it was shown that the proximity
operators for all functions in (3) can be computed in the
closed forms, we can solve the problem (2) by using the si-
multaneous direction method of multipliers (SDMM) [15],
as

Algorithm 1: Image recovery for rth frame
Input: yr, Ar, x̂r−1
Output: x̂r

1. Set γ > 0
2. Set projsr (0) for x and 0s for u0, . . . , u3.
3. Repeat the following operations:

for i = 0 ∼3
si ← Lix,
ui ← proxgi

(si + ui),
ui ← ui + si − ui,

x← Q−1∑3
i=0(ui − ui),

until a stopping condition is met.

where 0 is a zero vector, L0 = L, L1 = L3 = I, g0(u) =
∥u∥1, g1(x) = λ1∥x − x̂r−1∥1, g2(u) = λ2∥u − ûr−1∥1, and
g3(x) = ısr (x). We also used Q =

∑3
i=0 L⊤i Li, which we as-

sumed invertible. In the following simulations, both L and L2
are two-dimensional discrete cosine transform (DCT). Then,
Q reduces to 4I and Q−1 application in the update of x can be
simplified to just the division by four. Application of L and
L2 to x can be computed by O(N log N). Under these condi-
tions, Algorithm 1 converges quickly, say after twenty time
iterations, which is the stopping condition in the simulations.

We applied Algorithm 1 to 25% block-randomly selected
pixel images from the sequences T and B. The balancing pa-
rameters were set as λ1 = 0.5 and λ2 = 1.1 For comparison,
these sequences were reconstructed by the method in [10], the
proposed method with λ1 = λ2 = 0 (no reference), and the nu-
clear norm minimization as well. The reconstructed sequence
can be seen at the same URL, as well as the matlab codes.
Figure 3 shows one frame in the reconstructed sequence for

1These values were empirically determined, but λ1/λ2 is similar to the
inverse ratio of the peaks in Figure 2.
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(a) Original image (b) Block randomly selected pixels

(c) Recovery by the proposed method (36.37dB) (d) Recovery by the nuclear norm minimization (34.42dB)

Fig. 4. Reconstructed images for an image in the sequence B.
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Fig. 5. PSNRs of reconstructed images.

the sequence T. Figure (a) shows the target image. Figure (b)
shows the block-randomly selected pixels. Figures (c), (d),
(e), and (f) show the reconstructed images by the proposed
method, the method in [10], the no reference method, and the
nuclear norm minimization, respectively. PSNRs computed
by 20 log10

255
√

N
∥x̂r−xr∥2 [dB] are also shown in captions. We can

see that the proposed algorithm outperforms the other meth-
ods both subjectively and objectively. Figure 4 shows one
frame in the reconstructed sequence for the sequence B. Fig-
ures (a) and (b) show the target image and the block-randomly
selected pixels, respectively. Figures (c) and (d) show the
reconstructed images by the proposed method and the nu-
clear norm minimization, respectively. PSNRs with respect
to frame number are shown in Figure 5, in which the red,
blue, black, and green curves indicate PSNRs by the proposed
method, the method in [10], the no reference method, and the
nuclear norm minimization, respectively. We can see that,
even though the peak value by the proposed method is lower
than that by the method in [10] (blue), the proposed method
(red) keeps high PSNR values for all frames.

4. CONCLUSION

We proposed a sequential image completion algorithm that
enhances the number of pixels for high-speed camera imag-
ing. The proposed algorithm exploited sparsity both within
each frame and between frames. Simulation results showed
that the proposed method outperforms not only the present
authors’ previously proposed method but also the standard
nuclear norm minimization.
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