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Abstract—The detection of note onsets is gaining a growing
interest in audio signal processing research due to its wide range
of applications in music information retrieval. We propose a new
note onset detection algorithm NINOS2 exploiting the spectral
sparsity difference between different parts of a musical note.
When compared to the popular state-of-the-art LogFiltSpecFlux
algorithm, the proposed algorithm shows up to 61% better per-
formance for automatically annotated guitar melodies as well as
chord progressions. We also propose an additional performance
measure to assess the relative position of detected onsets w.r.t.
each other.

I. INTRODUCTION

A note onset is conceptually defined as the time instant at
which a musical note is played. Looking at the musical signal
nature where a note is decomposed into a transient followed
by a steady-state portion [1], onsets are points chosen to be
as close as possible to the start of transients (attacks) [2]. In
this paper, the proposed methodology for onset detection is
based mainly on the definition found in [3] where an onset is
defined as the first detectable part of the note in an isolated
recording.

There is a growing interest in defining and detecting onsets,
not only because transients play an important role in timbre
perception [4], hence in instrument identification, but also be-
cause onset detection is useful in a wide range of applications:
automatic music transcription [5], sound analysis (tempo and
beat tracking) [6] and synthesis (enhancement of attacks) [7],
and adaptive audio effects (time stretching). Moreover, the
detection of note onsets is of importance in the growing field
of music information retrieval and its added value for music
search engines and recommender systems.

In the note onset detection literature, different definitions
and models for signal onsets have been used, different ways
of (often manually) labeling onsets have been employed to
generate the ground truth for performance evaluation, and
several algorithms capable of automatically detecting onsets up
to a certain precision have been proposed. A general scheme
for onset detection algorithms was introduced by [2]. The
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main component of this scheme is the reduction function or
onset detection function (ODF) defined as a highly subsampled
version of the original music signal having distinguishable
amplitude peaks at time instants where onsets appear [3].

Existing methods for onset detection can be classified into
two main groups: probabilistic and non-probabilistic methods.
Whereas in the first methods, a probabilistic model [8] is
learned or a neural network [9] is trained and then ODFs
are calculated, in the latter methods ODFs are calculated
directly from the signal or its extracted features [4], [10]. Even
though the probabilistic methods seem to outperform the non-
probabilistic ones by a small factor [11], the former need to
be trained on large data sets to achieve more generic results.
It is important to note that when using learning methods
the features are learned but do not necessarily have good
correspondence with musical properties, as opposed to the
features typically used with non-probabilistic methods [4].

Many non-probabilistic solutions can be found in the lit-
erature [1] and differ in the signal representation used in
the algorithm: time domain amplitude or frequency domain
amplitude, phase, or both [12]. These solutions also differ in
the type of signal operations used to compute the ODF: energy
magnitude, distribution, derivative . . . etc [4]. By looking at
the MIREX note onset detection results [11], the state-of-
the-art non-probabilistic method is the ComplexFlux method
[13] which adds the phase information to the SuperFlux [10]
method. Both methods aim to solve a special case (vibrato
and tremolo suppression) and are based on theLogFiltSpecFlux
[12] method which applies some pre- and post-processing to
the Detection by spectral dissimilarity or SpectralFlux method
proposed earlier in [4]. These methods all share the same basic
idea, i.e. to detect onsets by looking at the temporal evolution
of the magnitude spectrogram. The SpectralFlux ODF denoted
∆ is given by:

∆(i) =

k=N
2∑

k=1

H(Xik −Xi−1,k) , (1)

where H(x) = x+|x|
2 is the half-wave rectifier function and

Xik is the magnitude spectrogram for a music signal frame
with frame index i and frequency bin k. The LogFiltSpecFlux
ODF is obtained similarly but using the magnitude spectro-
gram coefficients’ logarithm instead which results in a slight

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 978



onset detection improvement. From the above definition, these
ODFs would perform poorly with consecutive notes sharing a
considerable amount of harmonics or with repeated notes with
insufficient increase in magnitude. Such note sequences would
be highly present in melodies formed by chords sequences,
where chords would have higher probability of shared har-
monics.

This paper presents a new non-probabilistic method for
onset detection termed INOS2 (Identifying Note Onsets based
on Spectral Sparsity), as well as its normalized version termed
NINOS2. The proposed ODF is a (normalized) sparsity mea-
sure of the magnitude spectrogram of each input signal frame.
Even though sparsity is an important distinguishing feature
between the magnitude spectrum of a note’s transient and
steady-state parts, it has not been explicitly used in exist-
ing approaches to note onset detection. Moreover, since the
proposed ODF does not rely on spectral differences between
successive signal frames, the INOS2 method overcomes the
previously discussed problems related to certain note and
chord sequences.

Another challenging problem in note onset detection algo-
rithm design, is to unambiguously define and calculate the
onset ground truth values, as it is difficult to tell what a
“correct definition” of onsets is. Most of the proposed methods
are evaluated with datasets that are manually annotated by
looking at signal waveforms and/or spectrograms and listening
to signal recordings [3]. In this paper we introduce a different
evaluation approach, in which synthetic music signals based
on real, automatically annotated musical note recordings are
generated, as will be explained in Section III-A.

Having introduced the problem, the related work and chal-
lenges, Section II will emphasize the concept and explain
the details of the proposed onset detection algorithm. The
experimental evaluation is shown in Section III comparing the
NINOS2 and LogFiltSpecFlux methods. Finally, Section IV
presents the conclusion and hints for future work.

II. PROPOSED NOTE ONSET DETECTION METHOD

State-of-the-art onset detection methods follow a certain
scheme where the input signal undergoes four operations:
pre-processing, ODF calculation, post-processing and peak-
picking [2]. In the pre-processing step, the signal is filtered in
order to emphasize some aspects or remove irrelevant noise
making the detection easier. Then the signal is processed by
a reduction algorithm in order to calculate the ODF. The
resulting ODF may or may not undergo another filtering (post-
processing) step before applying peak-picking to determine the
onsets position in time. In this paper the pre-processing step is
skipped and the focus will be on the ODF and the remaining
operations.

A. Proposed Onset Detection Function (ODF)

The proposed ODF is based on the fact that any musical
note can be expressed as a sum of sinusoids. While the steady-
state part of a note is well approximated by a small number
of sinusoids, the transient part, being a short interval of time

where the statistical and energy properties of the signal change
rapidly [1], requires a much higher number of sinusoids to
be accurately represented. Consequently, in the magnitude
spectrogram of a musical note, the transient (attack) part of the
note is spectrally less sparse than the following steady-state
(tonal) part.

To maximize the differentiation between onsets and non-
onsets in terms of spectral sparsity, we first select a subset
of magnitude spectrogram coefficients. For guitars the note’s
fundamental frequency and harmonics have high energy during
attacks and then decrease slowly, while the other frequency
components are present almost only during attacks and gen-
erally have lower energy than the harmonic components. Fig.
1 makes it obvious that low-energy coefficients (1b) are more
representative for onsets than high-energy ones (1a). Hence
by ordering the magnitude spectrogram coefficients by their
energy along the frequency dimension and removing the high-
energy ones, thus neglecting fundamentals and harmonics,
before applying the sparsity measure will enhance the dis-
criminative power of the proposed ODF.
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(a) High-energy coefficients.
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(b) Low-energy coefficients.

Fig. 1. High- and low-energy coefficients behavior vs onsets.

We will now explain the details of how to calculated the
INOS2 ODF. First, the input signal is divided into overlapping
windowed frames x1, x2, . . . , xL. For each frame xi the mag-
nitude spectrogram Xik ∈ RN is calculated using the discrete
Fourier transform (DFT),

Xik = |F(xi)| , i = 1, . . . , L, k = 1, . . . , N. (2)

Then the magnitude spectrum coefficients in each frame Xik

are sorted in ascending order and only the first J out of N
coefficients are used afterwards, with

J = b γN c, J ∈ Z and 0 < γ < 1

where b·c denotes the floor function.
Finally, the INOS2 ODF is calculated by measuring the

spectral sparsity of the subset magnitude spectrogram Xij .
The ODF is chosen to be an inverse-sparsity measure as to
have peaks for non-sparse frames, thus highlighting possible
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onset locations in time. The INOS2 ODF is an inverse-sparsity
measure Υ defined per frame as:

Υ(i) =
‖Xi‖22
‖Xi‖4

=

∑J
j=1X

2
ij(∑J

j=1X
4
ij

) 1
4

. (3)

As stated in [14], to check whether or not a function could
be used as a sparsity measure, it should satisfy two conditions
which form together the sparsity definition. Firstly, the most
sparse signal is the one with all its energy concentrated in one
single coefficient. Secondly, the least sparse would be a signal
having the energy distributed equally over all its coefficients.
For example,

Smax = S([0, 0, 0, 0, 1]) > . . .

> S([0, 0, 1, 1, 1]) > . . .

> S([1, 1, 1, 1, 1]) = Smin

where S is a sparsity measure defined for vectors of equal
length. By applying this conceptual definition, it can be easily
shown that the INOS2 ODF in (3) is an inverse-sparsity
measure.

More specifically, Υ is a joint sparsity and energy measure.
This becomes clear when rewriting (3) as

Υ(i) = ‖Xi‖2 ·
‖Xi‖2
‖Xi‖4

. (4)

The first term ‖Xi‖2 is the l2-norm which represents the
energy of the signal frame. This is a relevant feature for
onset detection as usually onsets are accompanied with an
energy rise. It has been used in the envelope follower method
for onset detection [4]. On the other hand, the second term
reflects sparsity. It is the ratio between the frame’s l2-norm
and l4-norm which increases as sparsity decreases. This is
explained by applying the unit-ball concept [1] as shown in
Fig. 2.
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Fig. 2. Relation between l2-norm and l4-norm.

The figure shows a circle which represents the l2-norm
unit ball in 2D. This is the set of points representing vectors

having an l2-norm equal to 1. First notice that being near
the x or y axis, points represent sparse vectors and inversely
while moving away from the axes. By applying the previously
mentioned sparsity definition, the most sparse vectors are
the points lying on the axes, i.e. [0, 1], [1, 0], . . . etc., while
the points lying on the 45° lines are the least sparse, e.g.
[
√

0.5,
√

0.5]. Focusing on the first quadrant, we can calculate
the l4-norm for each of the points on the l2-norm unit ball.
This could be graphically understood by looking at the l4-norm
unit ball –which is approximately a square– and its scaled
versions each containing one of the points mentioned earlier.
We observe that the scaled l4-norm balls are getting smaller
while moving from [0, 1] towards [

√
0.5,
√

0.5] and then bigger
again while continuing to [1, 0]. This means the l2-norm is
being larger than the l4-norm when the vectors become less
sparse and hence the ratio becomes larger.

Finally, by normalizing the sparsity measure to the number
of coefficients, it can be shown that its inverse satisfies all of
the desired sparsity measure criteria proposed in [14]. Using
the empirical mean defined per frame Xi by

EJ{Xi} =
1

J

J∑
j=1

Xij ,

the normalized ratio of norms is defined as
2
√
EJ{X2

i }
4
√
EJ{X4

i }
=

1
4
√
J
× ‖Xi‖2
‖Xi‖4

.

Hence the NINOS2 ODF, i.e. the normalized version of the
INOS2 ODF, is defined as the normalized inverse-sparsity
measure ℵ,

ℵ(i) =
‖Xi‖22

4
√
J‖Xi‖4

. (5)

Even though the normalization does not much affect the onset
detection results presented in this paper, it is necessary and
useful in future work when processing frames having different
lengths to obtain detections with different precisions.

B. Peak-Picking

For simplicity and fair comparison, the peak-picking used
with the state-of-the-art algorithm [13] is applied in which a
frame xi is an onset candidate if all the following conditions
are satisfied:

1) ℵ(i) = maxl ℵ(i+ l), with l = −α, . . . ,+β,

2) ℵ(i) ≥ 1
a+b+1

∑+b
l=−aℵ(i+ l) + δ,

3) i− p > Θ,
where α, β, a, b and Θ are the peak-picking parameters: before
maximum, after maximum, before average, after average and
combination width counted in frame units, and p is the
previous onset’s index. An onset should be the highest ODF
amplitude peak in its vicinity and is an amplitude offset δ
above its neighborhood average. Finally an onset should be Θ
frames apart from its predecessor in frame p.

While the peak-picking parameter values are kept the same
as in [13], Θ is set equal to the detection window length



which is the maximum amount of frames in which a single
ground-truth onset could occur. This value depends on the
frame overlap and is calculated using the following relations:

h = b(1− q)Ne,
r = fs/h,

Θ = drN/fse.
(6)

where b·e and d·e denote the nearest integer and ceiling func-
tions, h is the hop size in samples, q is the frame overlap factor
from 0 to 1, N is the frame size in samples, r is the frame rate,
fs is the sampling frequency and Θ again is the amount of
frames to be skipped after one onset detection before aiming to
detect a new onset. This value should preferably be increased
in case of instruments with very long attacks.

C. Onset Detection Algorithm Parameters

For a complete understanding of the (N)INOS2 algorithm
and of the performance measures explained later, we discuss
some important algorithm parameters:
• Processing frame size (N ): It should be larger than a

single period of the signal [4] and small enough to capture
transients.

• Detection resolution: It depends on the frame rate r which
is inversely proportional to the hop size h.

• Processing mode: The detection algorithm could be run
in either offline or online mode. In the latter, peak-picking
parameters β and b are set to zero.

• Ground-truth increase-factor: It is used to increase the
detection window to handle the lack of precision inher-
ent in the ground-truth generation. Onsets may happen
slightly before or after the ground-truth onset.

III. EXPERIMENTAL EVALUATION

A. Data Set

As mentioned before, most of the annotated datasets for note
onset detection are manually annotated [3], [10], [12]. Manual
onsets annotation depends on many factors, e.g. the human
visual and auditory accuracy or the musical note context (what
comes before and after a note). In this paper we use an
objective method for selecting onsets ground-truth, which is
preferable to obtain a fair and accurate performance evaluation.
To this end, we work with isolated notes or chords from
the McGill University Master Samples library [15] and mix
these to form a melody or chord progression. A software
tool has been developed to load the different instrument
notes, apply some amplitude effects (fade, loudness, etc.), and
automatically annotate onsets and offsets (which can be easily
and accurately done on isolated notes) depending on a short-
term energy measure. Finally the annotated notes are mixed
using some specifications (harmonic sequence, distances be-
tween onsets, etc.). In this way, artificial melodies and chord
progressions are generated together with their automatically
calculated ground-truth. This tool and the methodology are
explained in more detail in [16].

We have tested the proposed algorithm with all guitar
libraries found in [15], in order to cover acoustic and electric

guitars, single notes and chords, as well as different playing
styles. Only two guitar folders are excluded where the first
“Electric Guitar Fifths” is facing poor detection performance
with all tested algorithms and “Guitar Tapping” which contains
percussive rather than pitched notes - body and not strings
tapping. For each library, three test melodies are generated
each having 50 notes: one test for algorithms tuning and the
other two for algorithms evaluation. The temporal distances
between notes are randomly chosen between 100 ms and 1
s. The input signals (fs = 44.1 kHz) are divided into frames
of N = 2048 samples (46 ms) with an overlap of q = 90 %
leading to a detection resolution of 4.6 ms which is comparable
to temporal hearing resolution (≈ 10 ms). Then a 46 ms
Hanning window is applied to each frame. The ground-truth
increase-factor is set to 40 % which results in a 18.5 ms
larger detection window in order to achieve the best average
performance over all tuning experiments. In the tuning phase,
the coefficients percentage γ is chosen to be 94 %.

B. Performance Measures

An important issue when assessing the detection algorithms
is how true positives and negatives are counted. Here we
adopted the same concept as the state-of-the-art algorithm
where two onsets detected within one detection window are
counted as one true and one false positive, and an onset counts
only for one detection window [10].

The most common way to compare onset detection algo-
rithms is by evaluating the corresponding F1-scores. We will
compare results obtained with thresholds δ maximizing the
F1-score for each algorithm. Since a true positive could occur
anywhere within the detection window, a new measure is
developed to determine how large the detection window should
be in order to achieve the selected F1-score. This measure is
defined per test melody by:
• Detections mean µd: The average onset relative position

to the detection window start.
• Detections standard deviation σd: The corresponding

standard deviation.
When σd is small, the algorithm will be detecting onsets in the
same relative position to the start of the detection window. This
is an important measure that reflects how well the algorithm
detects the different onsets’ relative position to each other.

C. Results and Discussion

First, we discuss detection results and NINOS2 performance
compared to LogFiltSpecFlux (LSF) when applied on the
guitar dataset. We first compare the respective ODFs. Figure
3 shows the two ODFs calculated for a short electric guitar
melody having 14 different chords. Onsets ground-truth are
marked with vertical lines and every two successive lines
represent a single detection window. The peak-picking results
are marked with circles for true positives and crosses for false
positives, while false negatives are easily noted by unmarked
detection windows.

While both ODFs present higher amplitudes at onsets,
it is clear that the proposed ODF is smoother and hence
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Fig. 3. Normalized ODFs for 14-chord guitar example.

facilitates the online peak-picking. This results in onsets being
detected earlier and more precisely with the NINOS2 method
as compared to the LogFiltSpecFlux method. In the latter,
because of the lack of ODF smoothness, the peak-picking
typically detects onsets later and produces more false negatives
due to the ripples in the ODF masking the onset peaks.

Next, detection performance is compared in Table I showing
the average best-F1 score for each algorithm/library pair. For
most of the analyzed melodies in the described dataset, the
NINOS2 method outperforms the LogFiltSpecFlux method
except for some acoustic guitar melodies where both meth-
ods perform equally. Table I also compares the detection
standard deviation σd showing again a better performance
for the NINOS2 method with the electric guitar and similar
performance for the acoustic guitar.

IV. CONCLUSIONS AND FUTURE WORK

This paper introduced a new promising method for note
onset detection based on spectral sparsity, showing up to
61 % better performance with guitar melodies and chord
progressions. A new measure σd for the evaluation of note
onset detection was proposed, emphasizing the importance of
onsets relative distance. Moreover, our evaluation has been
based on human-independent ground-truth annotation, making
the comparison between different algorithms easier and more
objective.

We are currently investigating a larger number of spectral
sparsity measures that will be applied on different instruments
with different playing styles. Because of the fact that the
NINOS2 ODF is constructed such as to fulfill general sparsity
measure properties, it can be used in future work for analyzing
melodies using a varying frame size.
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