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Abstract—The interference between automotive radar sensors
becomes a major issue with the increasing number of radars
integrated in vehicles for comfort and safety functions. The
state-of-the-art radars, typically operating with frequency mod-
ulated continuous wave (FMCW) modulation, can be regarded
as narrowband interferers for a high bandwidth orthogonal
frequency division multiplexing (OFDM) radar with comparably
short duration of OFDM symbols. In this paper, we analyze
the impact of such interferers on OFDM radar, give a signal
model of OFDM radar in presence of interference and discuss
the effect of signal processing steps on the latter. Additionally,
we present an interference suppression algorithm suitable for any
type of narrowband interference. We show in simulations that a
considerable interference suppression can be achieved and verify
the presented algorithm with measurements.

Index Terms—OFDM radar, interference, linear prediction

I. INTRODUCTION

The number of vehicles equipped with radar sensors is
growing constantly. This increases the importance of inter-
ference robustness of radars and motivates the research of
new radar approaches and interference suppression techniques.
A radar with OFDM signal generation has been studied by
several research groups [1]–[7], mainly due to the possibility
of combining radar functionality with communications [2]–
[4]. Due to the flexibility available with digital generation of
arbitrary waveforms, OFDM is believed to have a potential for
better interference-robustness, achievable with interference-
robust waveforms and waveform diversity between OFDM
radars [8]. Whereas in [9] the interference-robustness of an
OFDM radar in presence of other OFDM radars is studied,
the performance of the former in presence of interference
from state-of-the-art FMCW radars remains an open issue.
To address this issue, in this work we study the interference
robustness of the OFDM radar in presence of a state-of-the-
art FMCW radar with slow ramps and present an interference
suppression algorithm effective against such interferers.

Even though the current FMCW radars can cover a band-
width as large as the bandwidth of an OFDM radar, their
signals can still be considered as a narrowband interference
for the latter, since due to the long ramp duration (typically
in ms range) only a limited bandwidth is occupied by the
FMCW signal within one OFDM symbol (typically in µs
range). We analyze the interference robustness of OFDM radar
against such interferers and describe the effect of OFDM

signal processing steps on the interfering signal. We show that
through the OFDM signal processing the interference is decor-
related, i.e. spread in the distance-velocity (d,v) space, and
thus is reduced with the integration gain of two-dimensional
(2D) fast Fourier transform (FFT). Furthermore, we present
an interference suppression method designed against arbitrary
narrowband interferences. The proposed interference suppres-
sion algorithm is able to achieve a further increase of the
signal-to-interference ratio (SIR) via exclusion of the affected
subcarriers from evaluation. The signal values of the excluded
subcarriers are recovered by a forward-backward linear predic-
tion (FBLP) from the values of neighboring subcarriers. The
results show an SIR improvement of 12–16 dB depending on
the power ratio between desired and interfering signals at the
input.

II. OFDM SIGNAL MODEL AND SIGNAL PROCESSING

In the following, an OFDM signal model that serves as
a basis for the interference suppression algorithm in Section
III is presented. We also describe signal processing steps for
distance-velocity estimation and their impact on the interfering
signal. Whereas the OFDM radar signal processing steps are
generally well known, in this section we point out their
influence on the interfering signal.

For distance-velocity estimation, a sequence of OFDM
symbols is transmitted and the reflections from the surrounding
objects are received. The µ-th transmitted OFDM symbol in
baseband can be represented as

xµ(t) =
1

Nc

Nc−1∑
n=0

sµ(n)ej2πn∆f(t−TCP) (1)

where Nc is the number of OFDM subcarriers, sµ(n) is the
complex modulation symbol transmitted on the n-th subcarrier
of the µ-th OFDM symbol, ∆f = 1/TOFDM is the subcarrier
spacing, TOFDM is the OFDM symbol duration, TCP is the
cyclic prefix (CP) duration, TSRI = TOFDM +TCP is the symbol
repetition interval (SRI) and t ∈ [µTSRI, (µ+ 1)TSRI).

The µ-th received OFDM symbol in baseband without CP
in presence of noise and interference can be represented as

yµ(t) =

Ntarg∑
p=1

a(p)xµ(t− τµ(p))e−j2πfcτµ(p) + wµ(t)

+ vµ(t), t ∈ [µTSRI + TCP, (µ+ 1)TSRI)

(2)
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where Ntarg is the number of targets, p is the target index,
a(p) is the amplitude and τµ(p) is the round-trip delay of the
µ-th OFDM symbol for p-th target, fc is the carrier frequency,
wµ(t) is the noise and vµ(t) is the interfering signal.

The signal model in (2) is based on two assumptions,
both typical and realistic for OFDM radar: a) the signal
attenuation for p-th target a(p) is frequency-flat and time-
invariant and b) the Doppler shift of subcarriers is negligible
due to a suitable system parametrization. For simplicity, we
further assume that c) xµ(t− τµ(p)) = xµ(t− τµ=0(p)), i.e.
the range migration for the baseband signal xµ(t) during one
measurement cycle of Nsym OFDM symbols is negligible.
This assumption is however not necessary for the interference
suppression algorithm in Section III, since it treats each
OFDM symbol individually.

Substituting xµ(t) in (1) into (2) and sampling at Nyquist
rate after the CP, i.e. at t=mTOFDM/Nc+TCP, m∈ [0, Nc), the
µ-th discrete-time OFDM symbol yµ[m] , yµ(mTOFDM/Nc +
TCP) can be written as

yµ[m] =
1

Nc

Nc−1∑
n′=0

sµ(n′)ej2π
n′m
Nc

Ntarg∑
p=1

e−j2πn∆fτ0(p)

· a(p)qµ(p) + wµ[m] + vµ[m], n′ ∈ [0, Nc)

(3)

where qµ(p) = e−j2πfcτµ(p) is the carrier-induced phase shift
of the µ-th OFDM symbol due to the delay τµ(p), used
later for velocity estimation. An FFT is performed over each
OFDM symbol to obtain the spectrum Yµ(n) with orthogonal
subcarriers:

Yµ(n) =

Nc−1∑
m=0

yµ[m]e−j2π
nm
Nc = sµ(n)

Ntarg∑
p=1

a(p)qµ(p)

· e−j2πn∆fτ0(p) +Wµ(n) + Vµ(n), n ∈ [0, Nc)

(4)

where Wµ(n) and Vµ(n) are the FFT of wµ[m] and vµ[m],
respectively. Note that (4) holds due to
Nc−1∑
n′=0

sµ(n′)

Nc−1∑
m=0

ej2π
(n′−n)m

Nc =

Nc−1∑
n′=0

sµ(n′)δ(n′ − n) =

= Ncsµ(n), n ∈ [0, Nc)

(5)

where δ(n′ − n) is the Kronecker delta function defined as:

δ(n′ − n) =

{
1, n = n′

0, n 6= n′
. (6)

To eliminate the transmitted complex modulation symbols
sµ(n), a spectral division is carried out:

Zµ(n) =
Yµ(n)

sµ(n)
=

Ntarg∑
p=1

a(p)qµ(p)e−j2πn∆fτ0(p)

+
Wµ(n)

sµ(n)
+
Vµ(n)

sµ(n)
.

(7)

As it can be seen from (7), the noise and interference are
not amplified through the complex division if the modulation
symbols sµ(n) have unit amplitudes and varying phases over

n. In this case, both the noise and interference are influenced
only in phase by the spectral division. In case the radar signal
sµ and the interference Vµ are not correlated, the spectral
division leads to a decorrelation of the interference Vµ(n) over
n and thus in distance, and if sµ(n) is changing over µ, also
in slow-time µ and thus in velocity.
Zµ(n) contains a sum of complex sinusoids whose frequen-

cies correspond to the round-trip-delays, i.e. to the distances
to the targets. Thus, to create the distance profile of the µ-th
OFDM symbol, an IFFT is performed on Zµ(n):

zµ(k) =
1

Nc

Nc−1∑
n=0

Zµ(n)ej2π
nk
Nc =

1

Nc

Ntarg∑
p=1

a(p)qµ(p)

· ud(k, p) + (wµ ? x
∗
µ)[k] + (vµ ? x

∗
µ)[k], k∈ [0, Nc)

(8)

where ud(k, p) =
∑Nc−1
n=0 e−j2π

n
Nc

(Nc∆fτ0(p)−k) denotes the
integration gain of the p-th target in the k-th distance bin, “?”
denotes the circular discrete correlation and “*” denotes the
complex conjugate. The latter holds because for unit ampli-
tude modulation symbols sµ(n), (Wµ(n) + Vµ(n))/sµ(n) =
(Wµ(n) + Vµ(n))s∗µ(n). Finally, an FFT is performed over
OFDM symbols. The result for the k-th distance bin is:

Qk(l) =
1

Nc

Nsym−1∑
µ=0

zk(µ)e
−j2π µl

Nsym =
1

Nc

Ntarg∑
p=1

a(p)

· uv(l, p)ud(k, p) +Qwk(l) +Qvk(l), l ∈ [0, Nsym)

(9)

where uv(l, p) =
∑Nsym−1
µ=0 e

−j2π
(
fcτ(µ,p)+ µl

Nsym

)
is the inte-

gration gain in the velocity dimension, Qwk(l) and Qvk(l) are
the FFTs of the noise and interference terms in (8), l is the
velocity bin index. As (7) - (9) show, the interfering signal is
decorrelated in both distance and velocity through the OFDM
processing steps, whereas the desired signal is compressed into
one (d,v) bin. This prevents the occurrence of ghost targets due
high interference peaks and enables a high SIR and dynamic
range as shown in Section IV.

III. INTERFERENCE SUPPRESSION ALGORITHM

In this section we present an interference suppression
method for OFDM radar for arbitrary narrowband interfer-
ences. An interference is considered as narrowband if its oc-
cupied bandwidth during one OFDM symbol is much smaller
than that of the OFDM radar. This is the case for an FMCW
radar with the same bandwidth as the OFDM radar, but with
frequency ramps of a much longer duration than an OFDM
symbol. In this case, the interference affects only a small band
of contiguous OFDM subcarriers. This property is used for the
interference suppression method presented in this section.

The proposed interference suppression algorithm operates
on each OFDM symbol Zµ = [Zµ(0), .., Zµ(Nc−1)]

T in
(7). With this in mind, the index “µ” will be omitted in
the following. The interference suppression is achieved in
three steps: interference detection, least-squares estimation of
prediction coefficients from unaffected subcarriers and FBLP
of the samples affected by interference.
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In case of a considerable interference power, the subcarriers
occupied by an interfering signal will have a much higher
amplitude than the unaffected ones. Thus, these subcarriers
can be detected based on their amplitude, e.g. with a constant
false-alarm rate (CFAR) detector. They will be then excluded
from processing to drop the major part of the interference.

However, the exclusion of affected samples from processing
by replacement of their values with zeros leads to gaps in
frequency samples, which will lead to increased sidelobes after
the IFFT in (8). This might limit the dynamic range in presence
of targets with very high signal-to-noise ratio (SNR). To avoid
this limitation, the values of affected subcarriers are recovered
from neighbouring unaffected subcarriers via linear prediction.

Let us denote the index of the first and the last subcarrier
in the band occupied by the detected interference with nf and
nl respectively. It is well known that signals consisting of a
sum of complex sinusoids such as the desired signal in Z in
(7) have a linear dependency between the samples, which can
be represented by an autoregressive (AR) model [10], [11]. In
presence of noise, the set of linear equations describing this
dependency can be represented in a matrix form as

Z(o− 1) . . . Z(0)
...

. . .
...

Z(nf−2) . . . Z(nf−o−1)
Z(nl+o) . . . Z(nl+1)

...
. . .

...
Z(Nc−2) . . . Z(Nc−o−1)


︸ ︷︷ ︸

B

·


gfp(1)
gfp(2)
...

gfp(o)


︸ ︷︷ ︸

g
fp

≈



Z(o)
...

Z(nf−1)
Z(nl+o+1)

...
Z(Nc−1)


︸ ︷︷ ︸

b

(10)

where o>Ntarg is the assumed order of the system and g
fp

is
the vector of forward linear prediction (FP) coefficients. The
model order o has to be higher than the maximum number of
targets expected. However, o defines the minimum number of
adjacent subcarriers necessary for prediction, thus, should not
be unnecessarily large. For details on the choice of the system
order o please refer to [11].

A least squares estimate of g
fp

is given by

g
fp

= (BHB)−1BHb. (11)

where the superscript “H” denotes the conjugate transpose. In
linear prediction notation (11) can be rewritten as

g
fp

= R−1r (12)

where R = BHB is the correlation matrix and r = BHb is
the correlation vector obtained from the measurement data.
Alternatively, the autocorrelation function of Zµ is estimated
and g

fb
is calculated by the Levinson-Durbin algorithm [12],

[13] which is computationally more efficient than the LS
estimate in (12).

According to the theory of optimum linear prediction [11],
the backward prediction (BP) coefficients g

bp
can be obtained

from g
fp

with

g
bp

= T g∗
fp
, T =

0 · · · 1

. .
.

1 · · · 0

 (13)

where T is the permutation matrix that swaps the coefficients
of g

fp
. Consecutively, the missing samples of all affected

subcarriers are predicted recursively in forward and backward
directions:

Zfp(ifp) = [Z(ifp − 1), . . . , Z(ifp − o)] · gfp
(14)

Zbp(ibp) = [Z(ibp + o), . . . , Z(ibp + 1)] · g
bp

(15)

with ifp = (nf, nf + 1, . . . , nl) and ibp = (nl, nl − 1, . . . , nf).
Both predictions can be further averaged to obtain a better
estimate for the missing samples:

Z(ni) =
(Zfp(ni) + Zbp(ni))

2
, nf ≤ ni ≤ nl (16)

Then, the further OFDM processing steps described in Section
II can be performed.

Even though described for a single band affected by inter-
ference, the presented approach can be analogously applied if
multiple narrow bands are affected.

IV. RESULTS

In this section the performance of the proposed algorithm
is studied with simulations and measurements. Both measure-
ments and simulations are done with OFDM subcarriers mod-
ulated with complex modulation symbols of unit amplitudes
and random phases. A Kaiser window with β = 7.7 is used
for sidelobe suppression for FFTs in (8) and (9). For the
interference suppression, the model order is set to o = 50.

A. Simulations

An OFDM radar interfered by an FMCW radar at 77 GHz
is simulated. Both systems have the same bandwidth of
B = 625 MHz. For the OFDM radar this bandwidth is shared
between Nc = 1024 OFDM subcarriers. Chirp duration is
Tch = 5 ms, whereas with TSRI = 12.29 µs and Nsym = 512 a
duration of measurement cycle of Tcycle = 6.3 ms is achieved
for the OFDM radar. Both FMCW and OFDM signals have
the same power at the receiver input.

This configuration results in detection of 3 to 5 subcarriers
affected by the interference for each OFDM symbol. For the
detection of those subcarriers a CFAR detector is used.

A target at the distance d = 25 m and velocity of v =
−10 m/s is simulated in a noiseless setup. The OFDM signal
overlapped by the interfering chirp is shown in Fig. 1 (a).
The result obtained after (d,v) processing without interference
suppression is shown in Fig. 1 (b). A mean SIR of 51.3 dB
is achieved, which corresponds to the integration gain of
2D FFT. In Fig. 1 (c), the (d,v) image with interference
suppression is shown. A mean SIR of 64.25 dB is obtained,
which corresponds to a 13 dB SIR improvement.
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Fig. 1: OFDM radar distance-velocity estimation in presence of interference: (a) OFDM signal overlapped with interference,
(b) (d,v) image without interference suppression, (c) (d,v) image with interference suppression.
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Fig. 3: Mean dynamic range in (d,v) estimation over the input
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For quantitative performance evaluation of the presented
algorithm, the dependency of the mean SIR in (d,v) space
as well as the SIR with respect to the highest interference
peak is shown in Fig. 2. Furthermore, to demonstrate the need
for a recovery of the samples affected by interference, the
signal-to-interference-and-sidelobe-ratio (SISR) in case of just
nulling the affected samples is shown. As it can be seen, the
replacement the affected subcarriers’ values with zeros leads
to increase of sidelobes, which, depending on SNR, might

Fig. 4: OFDM-MIMO radar setup used for measurements

limit the dynamic range. Thus, a recovery of nulled samples
is necessary, especially in case targets with a high SNR are
present. Clearly, with the proposed method the SIR achieved
through (d,v) processing can further be increased by 12–16 dB.

To demonstrate the performance of the proposed algorithm
in presence of noise, the mean dynamic range (DRmean) over
SNR for SIR = 0 dB is presented in Fig. 3. The term mean
dynamic range refers to the ratio of the highest peak power to
the mean power of noise, interference and sidelobes. As it can
be seen, in case of a low SNR, i.e. when the noise is more
significant than the interference (SNRin <−15 dB), the DR is
limited by the noise. Starting from −15 dB, the interference
has a visible effect on the DR, and the proposed algorithm
is able to achieve an improvement. For SNRin > −7 dB,
without interference suppression the dynamic range is limited
almost completely by the interference and no significant DR
improvement over increasing SNR is obtained. In this region
the proposed algorithm achieves an increase of the DR via
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Fig. 5: (a): measured (d,v) image without interference suppression, (b): measured (d,v) image with improved SIR through
interference suppression

interference suppression, which tends asymptotically to the in-
terference suppression in the noiseless case for SNRin > 5 dB.

B. Measurements

To verify the results presented in Section IV-A, measure-
ments with a prototype OFDM radar at 24.5 GHz have been
taken in an anechoic chamber. One of two transmitters of the
multiple-input-multiple-output OFDM radar is programmed to
transmit an FMCW signal and represents an interferer for the
other transmit antenna operating as OFDM radar transmitter
(Fig. 5). Due to the direct coupling between antennas the
interference has a higher input power than the OFDM radar
signal. All radar parameters except the carrier frequency are
as in Section IV-A. Two stationary targets (corner reflectors)
at the distance of 4.7 m and 6.4 m are present.

A mean SIR of ≈48 dB and a peak SIR of 38.7 dB has been
achieved in measurements. Through interference suppression
an increased mean SIR of ≈ 58.8 dB and a peak SIR of
48.96 dB have been obtained. After interference suppression
the interference level is comparable with the noise floor.

Furthermore, the measurements show the robustness of the
presented method against multipath propagation of interfer-
ence, since the interfering signal arrives at the receiver through
multiple paths: over the direct coupling and via reflection from
targets.

V. CONCLUSION

In this paper we discussed the issue of interference for
OFDM radar and described the effect of OFDM signal pro-
cessing steps on the interfering signal. We have shown that
the interference is decorrelated in (d,v) space through the
processing steps, which already leads to a high SIR. We also
presented a method for suppression of narrowband interference
and demonstrated its performance in example of an FMCW
interferer with slow ramps. Whereas for chosen parameters
a mean SIR of 51 dB has been achieved in simulations,
a further SIR improvement of 12–16 dB has been obtained

by the proposed interference suppression algorithm. Finally,
measurements with a prototype OFDM radar have validated
the results.
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