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ABSTRACT

Most of the available phase retrieval algorithms were explic-
itly or implicitly developed under a Gaussian noise model, us-
ing least squares (LS) formulations. However, in some appli-
cations of phase retrieval, an unknown subset of the measure-
ments can be seriously corrupted by outliers, where LS is not
robust and will degrade the estimation performance severely.
This paper presents an Alternating Iterative Reweighted Least
Squares (AIRLS) method for phase retrieval in the presence of
such outliers. The AIRLS employs two-block alternating op-
timization to retrieve the signal through solving an £,-norm
minimization problem, where 0 < p < 2. The Cramér-Rao
bound (CRB) for Laplacian as well as Gaussian noise is de-
rived for the measurement model considered, and simulations
show that the proposed approach outperforms state-of-the-art
algorithms in heavy-tailed noise.

Index Terms— Phase retrieval, iterative reweighted least
squares, Cramér-Rao bound (CRB).

1. INTRODUCTION

The problem of recovering a signal from the magnitude of
linear measurements, referred to as phase retrieval, appears
in many areas including optical imaging, X-ray crystallogra-
phy, coherent diffraction imaging, and astronomy, where the
detector only records intensity information.

The most well-known algorithms for phase retrieval are
Gerchberg-Saxton (GS) [1] and Fienup hybrid input-output
(HIO) [2], which are alternating projection methods. These
can work well in practice, despite lacking of theoretical per-
formance guarantees. Over the past five years, modern opti-
mization techniques have been suggested to solve this diffi-
cult problem, e.g., semidefinite relaxation (SDR) approaches
such as PhaseLift [3]-[4] and PhaseCut [5], and a gradient
descent type method named Wirtinger-Flow (WF) [6]. It has
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been proved that exact recovery is possible with these lat-
ter methods, with high probability, in the noiseless setting
with random Gaussian measurements. In our recent work,
we proposed a least-squares feasible point pursuit (LS-FPP)
approach [7] for solving the same optimization problem as
LS PhaseLift, but instead of relaxing it using SDR, we em-
ploy the FPP approach proposed in [8] for general nonconvex
quadratically constrained problems.

Most of the available phase retrieval algorithms like
PhaseLift, WF and LS-FPP, were explicitly or implicitly de-
veloped under a Gaussian noise model, building upon LS for-
mulations. However, in some practical applications of phase
retrieval, an unknown subset of the measurements may be
corrupted by outliers [9]-[13]. One representative example is
high energy coherent X-ray imaging using a charge-coupled
device (CCD) where the impulsive noise originated from X-
ray radiation might effect on the CCD [13]. Under such a
circumstance, LS criterion is no longer robust, and may re-
sult in severe performance degradation. Several robust phase
retrieval algorithms, e.g., [9]-[12], have been carried out to
handle heavy-tailed noise but with assumption that the signal
is sparse. Thus, to implement them to retrieve dense signals
seems not so straightforward. This promotes us to devise ro-
bust algorithms for dense signals.

In this paper, we focus on designing a robust algorithm
that is resistant to outliers and nearly optimal for Gaussian-
type noise. We develop a two-block inexact alternating opti-
mization based algorithm, which is effective in dealing with
heavy-tailed noise by employing the £,-fitting criterion with
0 < p < 2. In order to assist in performance comparison,
we also derive the Cramér-Rao bound (CRB) for the consid-
ered phase retrieval model with unknown parameters being
defined as the phase and amplitude of the input signal, which,
to the best of our knowledge, has not yet been addressed in
the literature, such as [7], [14]-[18].

2. PROPOSED ALGORITHM
Consider a phase retrieval model with the form of

y = |Ax| +n ¢ RY (1)
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where | - | denotes the absolute value operator, A =
[a; --- ap] € CV*N is the measurement matrix with H be-
ing the conjugate transpose, and n is the noise vector which
in this paper, is assumed to be heavy-tailed. Our aim is to
recover x from y. Without noise, by introducing an auxiliary
vector u = e/4(A%) where / takes the phase of its argument,
(1) can also be written as [5][26]

Yu = Ax 2)

where Y = diag(y) is a diagonal matrix. In the presence of
impulsive noise, it is more appealing to employ the following
criterion for phase recovery:

S

min (|ymum — allx|* + e)p/2 3)
lul=1,x o}
where || - ||2 is the 2-norm, 0 < p < 2 is chosen to down-
weigh outliers, and € > 0 is a small regularization parameter
that keeps the cost function within its differentiable domain
when p < 1, which will prove handy in devising an effective
algorithm later. Particularly, when 1 < p < 2, we may simply
sete = 0.

We follow the rationale of alternating optimization to deal
with Problem (3), i.e., we first fix u and update x, and then
we do the same to u.

Assume that the current solution at iteration 7 is
(x("),u™). Atstep (r+1), the subproblem w.r.t. x becomes

M
p/2
x(rth) = arg min Z <|ymu7(fl) — a7an\2 + 6) ()
m=1

which is very difficult to handle. Particularly, when p < 1,
the subproblem itself is non-convex. To circumvent this, we
propose to employ the following lemma [19]:

Lemma 1l Assume 0 < p < 2, ¢ > 0, and ¢,(w) =

p
2— p—2
=* (%w) + ew. Then, we have

(z® + e)p/ = min wr? + ¢,(w), %)

w>0
and the unique minimizer is

g (m2 + 6)%2 . (6)

Wopt =

By Lemma 1, an

p/2
bound of "M _, (\ymum allx|? + e)

the current solution x(") can be easily found:

upper
that is tight at

M

/2
Z <|ymu£rrz) - amx|2 + E)p

m=1

YmUyy — &, x
m=1
(N
where
2 h
w) = g (‘ymu%) —allx™| 4 e) . 8)

Instead of directly dealing with Problem (4), we solve a sur-
rogate problem using the right hand side (RHS) of (7) at each
iteration to update x. Notice that the RHS of (7) is convex
w.r.t. x and can be solved in closed-form:

x(r+1) — (W(T)A)Tw(r)yu(r). 9)

W) = diag (\/wgﬂ ,/@;}) , (10)

We note that the update of u is followed by the solution of
x("+1) rather than x(™. Thus, the conditional problem w.r.t.
uis

1 - 1 p/2
ul b = arg mln Z ( Yl — allx(TTD2 4 ) .
m:l

(1)

Although the problem is non-convex, it can be easily solved
to optimality. It is observed from (11) that given a fixed x,
for any p > 0, the solutions w.r.t. u are identical, i.e., simply
aligning the angle of y,,,u,, to that of aﬂx(r“), which is
exactly

where

e IR e ) S VA )

The explicit steps of the proposed method are summarized in
Algorithm 1.

Algorithm 1 AIRLS for phase retrieval
I: function AIRLS(y, A, x(9)
2 Initialize u® = exp(Z(Ax(O))) and WO =
-2

V/Zdiag (|yul® — Ax(02 4 €1,) =
notes a one vector of length M.

, Where 1, de-

3: while Until some stopping criterion is reached do
4: x(") = (W=D A) WD yu(—1
5: ul” = exp(jZ(Ax(")))

-2

p—2
6 WO = | /Bdiag (|[Yu”) — Ax2 +e1y) *
7: end while
8

. end function

Remark: The computational burden of AIRLS mainly lies
in the calculation of x at each iteration, which has complexity
O(MN?). Thus, if the algorithm converges after, say, rth
iterations, the total complexity is O(rM N?). Compared to
semidefinite relaxation based methods which have worst-case
complexity of O(N65), our approach is much, much simpler.
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3. CRAMER-RAO BOUND

It is well-known that the CRB provides the lowest achiev-
able bound of the variance of any unbiased estimators, and it
usually serves as a benchmark for mean squares error (MSE)
performance comparison. Over the past few years, several
CRBs have been derived for different phase retrieval mod-
els, e.g., two dimensional Fourier-based measurements [14],
noise added prior to taking the magnitude [15] and quadratic
model [7], [16]-[18]. However, there is no such a CRB been
studied for the model in (1). Unlike those existing lower
bounds derived with unknown parameters composed by real
and imaginary parts of x [7],[15]-[18], we provide a closed-
form CRB formula corresponding to the phase and amplitude
of x. The following theorem presents the CRB for a particular
type of heavy-tailed noise: Laplacian noise.

Theorem 1 In Laplacian noise, the variance of any unbiased
estimate corresponding to the amplitude of complex-valued x
is bounded below by

N
CRBLaplaciaan\ = Z d; (13)
i=1
and the variance of any unbiased estimate corresponding to
the phase of complex-valued x is bounded below by

2N

CRBLaplacian,A(x) = Z d; (14)
i=N+1

where d = [dy -+ dan] contains the main diagonal elements
of Ft which in this case is defined as

4
F = — Gdiag(|Ax|) > G" (15)
Jn

with
G— [diag(|x|)_1 ] [Re {diag (x*) A diag(Ax)}
Iy || Im{diag(x*) A diag(Ax)}
(16)

Here, (-)T, ()71, ()T and (-)* represent the pseudo-inverse,
inverse, transpose and conjugate operators, respectively.
When A is nontrivial, we find that F' is always singular with
rank (2N — 1). There, according to [20]-[23], instead of us-
ing inverse, we adopt the pseudo-inverse to compute a looser
CRB, which is also a valid bound that can be used as a bench-
mark to examine the efficiency of any unbiased estimators.
Besides the Laplacian case, one may also cares about the CRB
for Gaussian noise. The CRB for Gaussian noise can be di-
rectly computed using the following theorem:

Theorem 2 In Gaussian noise, the CRB is four times larger
than the CRB in Theorem 1, i.e.,

CRBGaussian = 4CRBLaplacian = 4trace (FT) )

With Theorem 2, it is easy to compute the CRB for Gaussian
noise. Note that similar results can also be found in [24].
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Fig. 1. MSE versus SNR in Laplacian noise.

4. SIMULATION RESULTS

In this section, we illustrate numerically the performance of
the proposed method and compare it with GS [1], WF [6],
PhaseCut [5], truncated WF (TWF) [25] and AltMinPhase
[26] in terms of MSE performance, where the MSE is com-
puted after removing the globe phase ambiguity between the
true and estimated x. The signal x with length N = 64 is gen-
erated from a complex Gaussian distribution with mean zero
and covariance matrix I, The number of measurements is
M = 10N. All results are conducted in a computer with 3.6
GHz i7-4790 CPU and 8 GB RAM and averaged from 200
Monte-Carlo tests. In the following, we consider two types of
heavy-tailed noise models: Laplacian and Gaussian mixture
noise. For the former, we also include the CRB in Theorem 1
as a performance benchmark.

It is seen in Fig. 1 that our method slightly outperforms
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Fig. 2. MSE versus SNR in SasS noise.

the AltMinPhase and GS algorithms, and achieves the best
performance, while the TWF and PhaseCut perform similarly.
Note that since WF admits a model where noise is added af-
ter |al’x|? , we use {y?}M, for WF, which results in multi-
plicated noise. Therefore, WF works in a much more severe
scenario than the other competitors, and it produces very large
MSE.

Fig. 2 depicts the MSE performance versus SNR in SaS
noise, where The PDF of a symmetric a-stable (SasS) distri-
bution is usually not available, but its characteristic function
can be written in an analytically closed-form expression as

B(t; o, ) = exp (=7 [t]*) (18)

where ®(a) = tan (an/2), 0 < a < 2 is the stability pa-
rameter that controls the density of impulses (e.g., smaller «
implies sparser impulses), and v > 0 is a scale factor which
measures the width of the distribution. For o < 2, ¢(t; o, )

possesses heavy tails. In the following, we set & = 0.8 and
v = 2. As we can see, the performance gap between AIRLS
and its competitors becomes even larger in SaS noise, where
AIRLS actually gains at least 10 dB improvement to the TWF
method when SNR > 20 dB, indicating that the proposed ap-
proach is more robust than the others in the face of heavy-
tailed outliers. When SNR < 15 dB, there is no MSE values
for WF. That is because WF frequently produces “not a num-
ber” in the SaS noise scenario.
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Fig. 3. Convergence behavior of AIRLS.

Finally, Fig. 3 plots the convergence behavior of AIRLS
algorithm with p = 0.6, 1 and 1.3, which illustrates that the
AIRLS converges in terms of cost function value after 100
iterations.

5. CONCLUSION

The phase retrieval problem has been revisited via a residual
minimization in the £,,-norm, resulting in an AIRLS algorithm
working with 0 < p < 2. The AIRLS is able to deal with
impulsive noise effectively, without necessarily knowing the
noise distribution beforehand. Furthermore, two CRBs were
derived for Laplacian and Gaussian noise models. Simula-
tions demonstrated that the proposed method outperforms the
state-of-art in impulsive noise.
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