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Abstract—In this paper, we present a novel unsupervised
framework for change detection between two high resolution
remote sensing images. Thanks to the use of local descriptors,
the method does not need any image co-registration and is able
to identify changes even with images acquired from different
incidence angles and by different sensors. Local descriptors are
used to both locally align images and identify changes. The setting
of thresholds as well as the final grouping of isolated changes
are performed thanks to a contrario statistical procedures. This
provides a complete and automatic pipeline, whose efficiency is
shown through several challenging pairs of high resolution urban
images, acquired through different satellites.

I. INTRODUCTION

Being able to detect changes between remote sensing im-
ages, with as little human intervention as possible, is cru-
cial for many applications such as urban planning, disaster
evaluation or land use monitoring. For this reason many
methods have been developed to perform unsupervised change
detection, see e.g. [1].

Over the years, the resolution of satellite acquisitions has
increased significantly, yielding very complex scenes [2], espe-
cially over urban areas. Advanced sensors, such as Worldview-
2 or Geoeye-2, can reach submetric resolution and produce
images with abundant geometric details. In such cases, tradi-
tional pixel to pixel methods are prone to fail [2], and one
should prefer methods relying on local structures instead of
pixels.

Another tendency of modern remote sensing imaging is that
scenes are acquired by a large variety of sensors. Comparing
heterogeneous images is difficult because of different resolu-
tions, incidence angles, shadows, or cloud cover. In particular,
different incidence angles produce strong parallax effects over
urban zones.

Now, the traditional and most widely used approaches to
change detection rely on a first step where images are co-
registered [3]–[5], followed by a pixel-based comparison. For
this second step, many methods have been proposed to effi-
ciently discriminate between changed and unchanged pixels,
relying on SVM [6], MRFs [7], a contrario methods [8]–[10],
morphological attribute profiles [11] or neural network (NN)
models [12].

Such pixel-based approaches fail when the registration is not
accurate enough, in particular on urban areas, for which more
sophisticated methods have been proposed. These methods

usually rely on an explicit modeling of buildings and the use
of a Digital Surface Model (DSM), as in [13]–[15].

These approaches yield accurate results and are not sensitive
to the parallax issue previously mentioned. However, they
necessitate the knowledge of DSM models and/or the use of
sophisticated acquisition procedures such as LIDAR, which
may be impracticable in cases such as disaster evaluations.

An alternative is to rely on local descriptors having a pre-
scribed degree of invariance, such as the descriptors developed
for computer vision applications, the most well known of
which is the SIFT descriptor [16]. Indeed, these descriptors
make it possible to identify common geometric structures
between images even in the presence of strong geometrical
or radiometrical distortions. Because such distortions will
also be encountered in remote sensing imaging, especially
in the aforementioned cases (different resolutions, parallax
distortions, cloud coverage, shadows, etc.), such descriptors
may be helpful to identify changes. However, these have
been used mostly for the pre-registration of images [17], and
hardly for the change detection step itself, with the exception
of [18], where some of the authors of the present paper
have proposed to detect changes based on the assumption
that few correspondences between descriptors will be found in
changed areas. In this paper, we build from similar ideas and
develop a full change detection pipeline, taking into account
the local geometry of the scenes and explicitly detecting
changed descriptors, yielding a more robust and precise iden-
tification of changed regions. The approach does not assume
any pre-registration between images and also yield satisfactory
results when heterogeneous sensors are used. Because the
method relies on geometric descriptors and explicitly model
local deformations, it is especially adapted to high resolution
urban scenes. To the best of our knowledge, this is the first
operational method of this kind that does not explicitly rely
on building or surface modeling.

In short, the proposed method works as follows. Start-
ing with a pair of unregistered images, keypoints and their
corresponding SIFT-like descriptors are first extracted and
matched between images. From these matches, a single global
transform is inferred between images, as well as several locally
evaluated transforms. For each keypoint in one of the image,
we test the computed transforms and retain the best location
in the other image. We call this location the mapping of the
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keypoint. Thanks to the local transforms, this step allows to
deal with different incidence angles and disparate heights.
Then we proceed to the change detection itself. Thanks to
an a contrario approach [19], we identify keypoints that
are significantly different from their mapping as changed.
Then, these changed keypoints are grouped, again using an a
contrario methodology, resulting in the final detected regions.

The remainder of the paper is organized as follows: in
Section II, we define keypoints, descriptors and their mapping.
In Section III, we define the changed keypoints and the corre-
sponding grouping procedure. We test the resulting algorithm
in Section IV on several challenging pairs of high resolution
images.

II. KEYPOINTS MAPPING

We assume that we have two unregistered images at hand.
In this section, we briefly explain how the local features are
extracted and matched, and then how their mapping (best
corresponding location) is found in the other image.

A. SIFT extraction and matching

We use a robust variant of the SIFT [16] method, as
described in [20], but virtually any local descriptor could
be used. Keypoints (and their scale) are detected as space-
time extrema of the Laplacian and then filtered by a multi-
scale Harris test. One or two dominant directions are then
associated to each keypoint. Descriptors are then made of the
concatenation of histograms of the gradient orientation on S
non-overlapping pie-shaped regions. As in the original SIFT,
these histograms are weighted by the gradient magnitude.
We refer to [20] for the full description of these descriptors.
In what follows, we write {pai ,dai }i=1,2,··· ,Na for the Na
keypoints and descriptors extracted from the first image Ia,
and similarly for those extracted from the second image Ib.

As a first step, we match keypoints between the two images
following the procedure from [20]. To compute the similarity
between descriptors, we use the circular earth mover distance
(CEMD) [20].

B. Key points mapping

From the matched pairs of keypoints, we seek a set of
transforms that will be complete enough so that, for each
keypoint, one of the transform will map the keypoint to
its corresponding position in the other image. The mapping
system aims at solving two problems: the registration of the
global geometric position and the correction of parallax effects
that occur when images have been acquired with different
incidence angles. These effects are particularly strong in high
resolution urban images, where tall buildings can shift over a
large number of pixels. We therefore proceed as follows : first
a global mapping is computed using feature correspondences,
and then local transforms are estimated on sliding windows.
In this work, we consider affine transforms (six parameters),
both for the global mapping and the local ones.

This appears to be a reasonable choice for urban scenes,
where the structures are locally plane. In order to infer these

transforms from the initial keypoints correspondences, we
rely on a robust multiple RANSAC procedure as presented
in [21], the so-called Multiple a contrario RANSAC (MAC-
RANSAC).

The global mapping f0 is computed from all matched
keypoints. In this case, we keep only the best transform
computed by the MAC-RANSAC algorithm, which is then
similar to a standard RANSAC procedure.

Then, we split the images into local windows with size 2L×
2L using a sliding window with 50 percent overlapping. For
each window, we consider all matched keypoints (from the
first step of the algorithm) falling into the window. From these
correspondences, we obtain a set of transformations using the
MAC-RANSAC algorithm. Notice that this is made possible
by the ability of the MAC-RANSAC algorithm to find several
transforms and to automatically decide which are meaningful,
a task that would be far from trivial using the plain RANSAC
algorithm.

Fig.1 illustrates this step by giving a simple example of
computation of local mapping functions in two windows (red
and yellow).

Fig. 1. Illustration of the necessity of local transforms. The buildings in
the red window are lower than the buildings in the yellow window, so that
the displacement of pixels in the yellow window is much larger than the
displacement of pixels in the red window, which gives rise to two different
mapping functions.

For a given point pai in Ia, we assume that we have
computed n local transforms f1, . . . , fn in the corresponding
local window. We then find its mapping in Ib as the position
fk(pai ) which is the most similar in Ib to pai in Ia. For this,
we compute, for each position fk(pai ), a new local descriptor
inheriting its scale and orientation from dai , the descriptor at
point pai . We call this new descriptor dbi,k. The mapping of pai
is then defined as fk̂(pai ), where the index k̂ is defined as

k̂ = arg min
k

(
DCEMD(dai ,d

b
i,k)
)
, (1)

where D denotes the Circular Earth Mover’s Distance(CEMD)
between descriptors, as introduced above, and the set of
transforms f1, . . . , fn corresponds to the local window the
keypoint pai belongs to. The same process is then repeated
with keypoints from Ib that are mapped to positions in Ia. In
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short, we choose for each keypoint the best position in the
other image according to a set of possible transforms.

Following this mapping step, we are given a set of pair
of positions, together with associated local descriptors, that
ideally correspond to the same physical positions of the
imaged scene, in both images Ia and Ib. From now on, we
write {

xai , x
b
i ,d

a
i ,d

b
i

}
i=1,...,N

, N = Na +Nb

for these positions and associated descriptors.

III. CHANGE DETECTION

We can now proceed with the change detection, by compar-
ing the descriptors corresponding to the same position, that is
dai and dbi , for i = 1, . . . , N . We first detect positions at which
the descriptors are significantly different, by relying on an a
contrario methodology to set the detection thresholds. Then,
we group the detected positions, again using an a contrario
methodology. The choice of this statistical framework for the
detection of changed regions is motivated by the robustness
of such approaches, as well as by their genericity.

A. Changed keypoints evaluation

Given a pair of corresponding positions (mapped keypoints)
(xai , x

b
i ), we want to decide whether they correspond to a

change between image Ia and Ib or not. For this, we compute
their similarity as D(dai ,d

b
i ) in order to label as changed the

positions at which descriptors differ significantly. In order to
set a threshold on this similarity, we rely on an a contrario
approach [19] similar to the one in [20]. The principle of this
approach is to set some random model, called background
model or null hypothesis, in which we assume there should
be no detections (changed keypoints in our case). For this, we
assume that the distance D between descriptors can be written
as D(dai ,d

b
i ) =

∑S
s=1 d(dai,s,d

b
i,s), where S is the number of

sectors the local descriptors are made of (see Section II-A).
This is in particular the case for the CEMD [20].

As it is common when setting matching thresholds using
the a contrario framework [20], we define the null hypothesis
H0 as

Hypothesis 1 (H0) for any index i, the random variables
{d(dai,s,d

b
i,s)}s=1,··· ,S are independent.

Under this hypothesis, and writing z for the random variable
corresponding to the total distance between two descriptors,
we get, for any threshold δ,

Θ(δ) := P(z ≥ δ|H0) =

∫ +∞

δ

S∗
s=1

Gs(z)dz. (2)

where the probability density function (PDF) of the random
variable d(dai,s,d

b
i,s) is denoted as Gs. The principle of a

contrario method is then to set a threshold on this probability
so that the expectation of the total number of false detections
is bounded [19]. Recalling that the total number of pairs on
which the detection is tested is equal to N = Na + Nb,

we define as changed any pair (xai , x
b
i ), i = 1, 2, · · · , N,

satisfying

Θ
(
DCEMD(dai ,d

b
i )
)

:= P(z ≥ DCEMD(dai ,d
b
i )|H0) ≤ ε

N
,

(3)

where ε sets the bound on the number of false detections,
see [19]. The last step, in order to compute the above proba-
bility, is to estimate the density Gs. These are simply estimated
through the histograms of observed distances d(dai,s,d

b
i,s),

when i = 1, . . . , N .

B. Changed keypoints grouping

Once the changed keypoints have been detected as explained
in the previous section, we aim at detecting local regions by
grouping these keypoints. Again, we rely on an a contrario
approach to do this in an automatic way . More precisely, local
regions are evaluated by considering, in a given region, the
total number of keypoints and the number of changed points.

As the keypoints {xai } in image Ia and {xbi} in image Ib

share a one to one mapping, we can consider only points in Ia
to perform the grouping. We first assume that the probability
for a given keypoint to be changed can be estimated globally,
so that, writing Nc for the total number of changed keypoints
(points detected by the procedure of the previous section),

Hypothesis 2 The probability % that any keypoint is a
changed keypoint is % = Nc/N .

Following the a contrario methodology, we detect groups of
changed keypoints that are unlikely under the hypothesis that
each keypoint is labelled as “changed” independently of the
other keypoints. That is, we define the null hypothesis H′0 as

Hypothesis 3 (H′
0) The number of changed keypoints in a

local region containing n keypoints follows a binomial distri-
bution B(n, %).

That is, the probability that this region contains more than
m changed keypoints is

Ψ(m,n) := P(k > m|H′0) =
n∑

k=m

B(k, n, %), (4)

where B(k, n, %) =
(
n
k

)
· %k · (1− %)n−k.

Following the a contrario method, we calculate the mean-
ingfulness of each local region by its Number of False Alarm
(NFA) and set a threshold on it. This NFA is defined as the
above probability times the total number of tested regions [19].
In order to cover a wide enough range of possible scales
for the regions to be detected, without testing every possible
regions, our candidate local regions are chosen as multi-scale
circulars regions with radius r ∈ [rmin, rmax] centered at each
keypoint. Suppose there are nr scales for each keypoint, then
the total number of candidate local regions can be computed
as Λ = nr ·N . Therefore, the NFA of a region containing n
keypoints among which m are changed keypoints is

NFA = Λ ·Ψ(m,n). (5)
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When working with large images, numerical values of the
NFAs may become intractably small. In such cases, one can
rely on the Hoeffding bound on the tail of the binomial
distribution to get an approximation of the NFA.

For each series of regions from rmin to rmax centered at
the single keypoint, we calculate an NFA for each region and
choose the minimal one for this series (therefore following the
same exclusion principle as in [22]). Eventually, we threshold
the NFAs by ε2 for the detection of the final regions,

NFAi < ε2, i = 1, · · · , N, (6)

IV. EXPERIMENTS AND ANALYSIS

In this section, we validate the proposed algorithm though
artificial and real experiments. For all experiments, we use the
following parameters. Local descriptors are computed with the
same parameters as in [20] and are matched using a matching
parameter value of 1. Sliding windows used to compute the
local transforms is L = 50, the MAC-RANSAC algorithm [21]
is run with a detection parameter of 1.

a) Synthetic experiments: We first detect changes that
are artificially added to pairs of high resolution images of
urban scenes, acquired from different satellites, Geoeye-1 and
Worldview-2, at two different times, 2009 and 2010. Both
satellites provide a resolution of 0.46 meters. We use three
pairs of images on which changes are created by inserting
excerpts from other urban images from the same satellites.
Images are available at this address1. We use such synthetic
image pairs because we are not aware of databases of anno-
tated high resolution heterogeneous images. On these images,
we evaluate performances through ROC curves. Our algorithm
is compared with classical pixel-based methods (difference,
ratio and correlation) after a global co-registration performed
by SIFT matching. This evaluation protocol is actually the
same one as recently proposed in [23]. We provide two ROC
curves. The first one, Figure 2, is aimed at evaluating the
detection of changed keypoints. Probability of False Alarms
and Probability of Detection are computed only on detected
keypoints for all methods. The second curve, Figure 3 is aimed
at evaluating the grouping stage of the method. This time,
we evaluate results on all pixels (for our approach, a pixel is
classified as changed if it belongs to one of the disk detected
as explained in Section III-B).

The first curve shows the proposed method is more efficient
than the three proposed alternatives, although the correlation
method after global registration gives good results. On the
second curve, we can see the proposed method yields much
better final regions than pixel-based methods after a global
registration. In particular these methods are not able to deal
with parallax effects that are very common in high resolution
urban images. Future comparison should be made with more
sophisticated methods such as those from [7] or [23].

b) Real experiments: Next, we provide detection results
between challenging pairs of images that do contain changes.
For these two experiments, the detection parameters are set

1http://perso.telecom-paristech.fr/∼gliu/eusipco2016/changedet.html

Fig. 2. Evaluation of the detection of changed keypoints.

Fig. 3. Evaluation of the grouping of changed keypoints.

to ε = 1 and ε2 = 10−5. The scales of the grouping region
are set to rmin = 20 and rmin = 50. The first example is
again made of two images from Geoeye-1 and Worldview-
2, on the city of Toulouse. The second example is made of
images extracted from Google Earth, acquired near Avenue
du Général Leclerc, Paris, in 2008 and 2014 respectively. In
particular, a large bus deposit was demolished between these
dates and at this place (bottom right of the image). On these
examples, one can visually check that the detected changes
correspond to large changed areas. On these examples, it also
appears that the detected changed regions are slightly bigger
than the real changed areas, so that a further spatial refinement
step could be developed. Observe also that they are many local
changes between images from the pairs, in particular because
of tall buildings, as well as radiometric changes, and that these
are well handled by the method.

V. CONCLUSION

In this work, we have proposed a change detection method
enabling one to compare images that are not registered. Thanks
to the use of invariant local descriptors, the method is robust to
radiometric changes and local geometric distortions. Because
these descriptors are adapted to geometric structures, the
method is especially adapted to high resolution urban scenes.
There are several ways this work could be continued. First,
we wish to produce a larger scale evaluation involving ground
truth on high resolution urban images. Next, one should take
into account shadows that in practice are responsible for
frequent false detections. Last, the method will fail in case of

2016 24th European Signal Processing Conference (EUSIPCO)

2438



Fig. 4. Examples of change detection. First line : Images are from Geoeye-1 (leftmost image) and Wordview-2. Second line : Images are extracted from
Google earth and correspond to two different times (2008 and 2010). From left to right on each line: two original images ((a) and (b)), changed keypoints
(c), changed regions (d).

low contrast scenes, where few keypoints are detected. In such
situations, a dense keypoint extraction could be considered.
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