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ABSTRACT
Adaptive filters for Volterra system identification must deal
with two difficulties: large filter length M (resulting in
high computational complexity and low convergence rate)
and high correlation in the input sequence. The second
problem is minimized by using the recursive least-squares
algorithm (RLS), however, its large computation complexity
(O(M2)) might be prohibitive in some applications. We
propose here a low-complexity RLS algorithm, based on the
dichotomous coordinate descent algorithm (DCD), showing
that in some situations the computational complexity is
reduced to O(M). The new algorithm is compared to the
standard RLS, normalized least-mean squares (NLMS) and
affine projections (AP) algorithms.

I. INTRODUCTION

Linear models and methods have played a key role
in engineering and signal processing because of their in-
herent simplicity. However, there are numerous practical
situations in which nonlinear processing is needed, either
because the nonlinearities in the system under study are
too important to be disregarded, or because the desired
behavior cannot be achieved with a linear system [1].
In the case of system identification, an important class
of nonlinear models are linear-in-the-parameters nonlinear
models, in which the input-output relation is nonlinear,
but the estimation problem is essentially linear. Popular
examples are polynomial filters, and in particular Volterra
filters [1]. The Volterra system model is similar to a Taylor
series, but with the ability to capture “memory” effects. In
[1], the LMS second-order adaptive Volterra filter has been
introduced using truncated Volterra series expansions.

Truncated Volterra series models have become popular
in nonlinear adaptive filtering applications, such as echo
cancellation [2], [3], channel equalization [4], system iden-
tification, detection and estimation and physiological system
modeling [5]. Several adaptive filters using Volterra mod-
els have been proposed, based on the least-mean squares
(LMS), recursive least-squares (RLS), affine projections
(AP) algorithms, among others [1], [3]–[5].

A problem related to Volterra system identification is the
large number of parameters to be estimated, which results in
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large computational complexity. In fact, a full second-order
Volterra kernel with memory depth of N samples contains
N(N + 1)/2 terms [4], see Section II. This means that
adaptive filters for identification of Volterra models should
have low computational complexity, preferably linear on the
filter length M (the number of parameters to be estimated).
This is the case of the LMS and normalized LMS (NLMS)
algorithms, but their convergence rate is slow, due to the
correlation in the Volterra kernel [4]. The RLS algorithm
can solve this problem, but at the cost of a computational
complexity that grows quadratically with M . Fast O(M)
versions of the RLS algorithm, such as lattice RLS [6]
cannot be used in this case, since they require time-shifted
regressors, which is not the case for Volterra models.
Fast multichannel QRD-RLS filters are good options, but
require a large number of divisions and square-roots [7],
[8]. Another option is the AP algorithm (APA) [4], [6],
whose computational complexity grows linearly with M ,
with a convergence rate between those of the LMS and
RLS algorithms.

In this paper we describe a new alternative, a low-
complexity version of the RLS algorithm suitable for
Volterra system identification, extending the RLS-DCD
algorithm, a low-complexity version of RLS, based on the
dichotomous coordinate descent (DCD) algorithm. RLS-
DCD was originally proposed in [9], and later was gener-
alized to deal with widely-linear models in [10]. The RLS-
DCD algorithm of [9], [10] has complexity O(M) when the
regressor has a time-shift structure. The algorithm in [10]
extends this result to widely-linear estimation, in which the
regressor is composed of two separate delay lines. We show
how a generalized version of [10] can be applied to lower
the complexity of Volterra system identification, organizing
the Volterra kernel in a number of separate delay lines. The
reduction in complexity results from exploring some block-
matrix symmetries in the regressor autocorrelation matrix
R(i). For a full second-order Volterra kernel, the resulting
complexity is O(M3/2), but if the number of cross-terms is
limited, as suggested in [4], the complexity becomes linear
in the filter length M . For simplicity, this paper concentrates
on the second-order Volterra kernel, but the idea can easily
be extended to higher-order kernels.

This paper is organized as follows: in Section II we give
a brief description of Volterra series. Section III describes
the DCD and RLS-DCD algorithms and how to reduce
the computational cost of updating the matrix R(i) in
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RLS-DCD for second-order Volterra kernels. Section IV
exemplifies the performance of our new technique under
different conditions, and compares the new algorithm with
standard RLS, NLMS and affine projection algorithms.
Lastly, Section V concludes the paper.

II. THE TRUNCATED VOLTERRA SERIES
For simplicity of presentation, we restrict our discussion

to truncated second-order Volterra system models. However,
the concepts discussed in this section are valid for higher-
order Volterra systems with finite memory [11]. As we

Fig. 1. Block-diagram of an Adaptive Truncated Volterra
Filter.

can see in (1) and Figure 1, the adaptive filter tries to
approximate the desired signal d(i) using a first- and
second-order truncated Volterra series expansion in the N
most recent samples, as

d̂(i) =
N�1X

m1=0

w1(m1; i)x(i�m1)

+
N�1X

m1=0

N�1X

m2=m1

w2(m1,m2; i)x(i�m1)x(i�m2),

(1)

where w1(m1; i) and w2(m1,m2; i) are linear and quadratic
coefficients, respectively, of the adaptive filter at time i
(a bias term could also be included). The adaptive filter
iteratively updates its coefficients at each timestep so as to
minimize the mean squared error E{e2(i)}, where E{·} is
the expectation operator and e(i) is the error signal

e(i) = d(i)� d̂(i). (2)

In this paper, the regressor vector s(i) of the Volterra filter
is organized in sets of delay lines defined as: sL(i) (Linear
delay line of length N ), sQ(i) (Quadratic delay line of
length N ) and sCk(i) (delay-k Cross-Product delay line of
length N � k) i.e.,

s(i) =
⇥
sL(i) sQ(i) sC1(i) . . . sCK (i)

⇤T
, (3)

where 1  K  N�1 denotes the maximum delay included
in the cross-product terms. The tap-delay lines are given by

sL(i) =
⇥
x(i) x(i� 1) . . . xL(i�N + 1)

⇤T (4)

sQ(i) =
⇥
x2(i) x2(i� 1) . . . x2(i�N + 1)

⇤T (5)

sCk(i) =
⇥
x(i)x(i� k) x(i� 1)x(i� 1� k) . . .

⇤T
, (6)

where the length of the last delay line is N � k. This
particular ordering of the regressor vector s(i) is used
in the next section to derive a low-complexity RLS-DCD
algorithm for Volterra filters.

III. THE RLS-DCD ALGORITHM
The RLS algorithm computes a weight vector w(i) by

iteratively solving the normal equations [6], [12]

R(i)w(i) = p(i) (7)

where

R(i) =
jX

i=0

�i�j
s(j)sT (j) = �R(i� 1) + s(i)sT (i) (8)

is the M⇥M autocorrelation matrix, and � is the forgetting
factor. The cross-correlation vector p(i) is

p(i) =
iX

j=0

�i�jd(j)s(j) = �p(i� 1) + d(i)s(i) (9)

For a regressor vector such as in (3), the standard
RLS algorithm uses the matrix inversion lemma to find
a recursion to R�1(i), and thus solves (7). This requires
O(M2) multiplications and additions at each time instant
[6], [12]. Low-complexity (O(M)) versions of RLS, such
as the fast transversal filter (FTF) [6], lattice RLS [6], [13]
and RLS-DCD [9], [12] require that the regressor vector be
composed of a single delay line and thus cannot be applied.
This constraint was eased in [10], in which a modified
version of the RLS-DCD algorithm was developed for the
case of widely-linear estimation, in which the regressor
is composed of two delay lines. Here we generalize the
result of [10] to the case of multiple delay lines, and show
how this can be used to obtain a low-complexity RLS-DCD
algorithm suitable for Volterra system identification.

Contrary to standard RLS, the RLS-DCD algorithm uses
a low-cost iterative algorithm to find an approximate solu-
tion �w(i) to the modified problem

R(i)�w(i) = �(i), (10)

where �(i) is computed through the recursion

d̂(i) = s

T (i)ŵ(i� 1), �(i) = �r(i� 1) + e(i)s(i),

ŵ(i) = ŵ(i� 1) +�ŵ(i) r(i) = �(i)�R(i)�w(i),

and r(i) is the residue at time i. Since in an adaptive
filter the weight update �w(i) is expected to be small,
a sufficiently good approximation to (10) can be obtained
through an iterative algorithm, using just a few iterations.
We follow [9], [14] and choose the DCD algorithm to solve
(10), obtaining an O(M) algorithm. DCD is an iterative
method for solving least-squares problems, designed to
avoid multiplications and divisions (which are replaced by
bit-shifts) [12], [15].

We use here the “leading” DCD algorithm, summarized
in Table I. Mb represents the precision in the solution
(it corresponds to the number of bits in the solution if
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the algorithm is implemented using fixed-point arithmetic).
The constant H should be chosen as a power of two, in
which case all multiplications and divisions reduce to bit
shifts, thus allowing simple implementations in hardware
[14]. Nu is the maximum number of vector operations in
the algorithm, which for adaptive filtering applications can
be chosen as Nu ⌧ M . The complexity of the leading
DCD algorithm is upper limited by (2M + 1)Nu + Mb

additions. This corresponds to a worst case scenario when
the algorithm makes use of all Nu updates and the condition
at step 3 in Table I is never satisfied [9].

Table I. Leading DCD algorithm
step Equation

Initialization:
�w(i) = 0, r = �, h = H , m = 1
for i = 1, . . . , Nu

1 n = arg maxp=1,...,M{|rp|}
2 m = m+ 1, h = h/2
3 if m > Mb , algorithm stops
4 if |rn|  (h/2)Rn,n, then go to step 2
5 �w(i) = �w(i) + sign(rn)h
6 r(i) = r(i)� sign(rn)hR(1:M,1)

The DCD algorithm thus allows us to solve (10) in O(M)
operations. The difficulty remains the update of R(i): if
we use (8) directly, the number of operations required
is O(M2). When the regressor vector s(i) consists of a
single delay line, [9] was able to use the structure in R(i)
to reduce the number of operations to O(M); later [10]
extended this result to the case of s(i) consisting of two
delay lines.

In the case of Volterra system identification, s(i) in (3)
consists of K +2 delay lines, where K  N � 1 is a limit
to the number of cross-terms considered. With a memory
depth of N , we have N elements for each sL(i) and sQ(i),
and N � k elements for sCk(i), so that the total number of
coefficients M is

M = 2N +
(2N � 1�K)K

2
, 1  K  N � 1. (11)

Taking into account the structure of s(i), R(i) can be
partitioned as

R(i) =

2

666664

RL(i) RLQ(i) . . . RLCK (i)
RQL(i) RQ(i) . . . RQCK (i)
RC1L(i) RC1Q(i) . . . RC1CK (i)

...
...

. . .
...

RCKL(i) RCKQ(i) . . . RCK (i)

3

777775
(12)

where for each block Rab(i), a, b 2 {L,Q,C1, . . . , CK}
we have a recursion (note that we write Raa(ii) as Ra(i)
to simplify notation)

Rab(i) = �Rab(i� 1) + sa(i)s
T
b (i). (13)

For each block on the main diagonal, instead of (13), we
can use the low-cost update proposed in [9],

Ra(i) =


ra(i) ⇢Ta (i)

⇢a(i) R

(1:↵�1,1:↵�1)
a (i� 1)

�
, (14)

where the notation R

(1:↵�1,1:↵�1)
a (i�1) stands for a matrix

with the elements of Ra(i� 1) from rows 1 through ↵� 1
and from columns 1 through ↵�1, and ↵ is an integer equal
to the dimension of sa(i). ra(i) is a real number and ⇢a(i)
is an (↵� 1)⇥ 1 vector. From (14), we note that we only
need to update the first column of Ra(i), since we already
have R

(1:↵�1,1:↵�1)
a (i� 1) from the previous iteration and

Ra(i) is symmetric. This is done as follows

R

(1:↵,1)
a (i) =


ra(i)
⇢a(i)

�
= �R(1:↵,1)

a (i� 1) + s(1)a (i)sa(i),

(15)
where s(1)a (i) represents the first element of vector sa(i).
Similarly, for the off-diagonal blocks we can use the recur-
sion [10]

Rab(i) =


rab(i) ⇢Tba(i)

⇢ab(i) R

(1:↵1�1,1:↵2�1)
ab (i� 1)

�
, (16)

where a 6= b, and ↵1 and ↵2 are the lengths of sa(i) and
sb(i), respectively. In general, Rab is not symmetric, so
⇢ab 6= ⇢ba:

R

(1:↵2,1)
ab (i) =


rab(i)
⇢ab(i)

�
= �R

(1:↵2,1)
ab (i� 1) + s(1)a (i)sb(i),

(17)

⇢ba(i) = �⇢ba(i� 1) + s(1)b (i)s(2:↵1,1)
a (i). (18)

These recursions reduce the total number of operations in
the update of the R(i) matrix, so that the total computa-
tional cost for the RLS-DCD algorithm applied to Volterra
system identification reduces to the values given in Table II
(we present the number of multiplications for two cases,
when 0 < � < 1 is any value, or when � = 1�2�m for an
integer m > 0). Table III summarizes the algorithm. The
costs for RLS, NLMS and APA (order �) are from [6].

Table II. Computational cost (RLS, NLMS, APA from [6])
Algorithm + ⇥ ÷

RLS M2 + 3M M2 + 5M + 1 1
NLMS 3M 3M + 1 1

APA of order � (�2 + 2�)M
+�3 + �2

(�2 + 2�)M
+�3 + �

�

RLS-DCD
(M from (11))

(N + 1)K2 �K3/2
�K/2 + 4M+

(2M + 1)Nu +Mb

(2N + 2)K2

�K3

�K + 4M
-

RLS-DCD
(� = 1� 2�m)

(2N + 2)K2 �K3

�K + 5M+
(2M + 1)Nu +Mb

(N + 1)K2

�K3/2
�1/2K + 3M

-

Note from Table II and (11) that if we increase M by
increasing the value of N , but keeping fixed the value of
K, then the computational cost of DCD-RLS grows linearly
with M . This situation is important, since in practice the
value of K is kept small to avoid having a filter length that
is too large, as explained in [4].

On the other hand, for a full second-order Volterra kernel,
such that K = N�1, (11) implies that M ⇡ N2/2 for large
N , and from Table II we conclude that the computational
complexity of RLS-DCD is O(M3/2), still much lower than
the O(M2) of standard RLS.
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Table III. RLS-DCD algorithm for Volterra system identi-
fication

step Equation
Initialization:
�ŵ(0) = 0M⇥1, r(0) = 0M⇥1,
Each block-matrix of main diagonal of R(0) = �I,
Each block-matrix of upper diagonal of R(0) = 0
for i = 1, 2, . . .

for a = L,Q,C1, . . .
1 R

(1:↵,1)
a (i) = �R

(1:↵,1)
a (i� 1) + sa(i)sa(i)

end
for ab = LQ,LC1, LC2, . . . (upper diagonal of R(i))

2 R
(1:↵2,1)
ab (i) = �R

(1:↵2,1)
ab (i� 1) + sa(i)sb(i)

3 R
(2:↵1,1)
ab (i) = �R

(2:↵1,1)
ab (i� 1) + sb(i)s

(2:↵1,1)
a (i)

end
4 RL, RQ, RC1 , . . .) R(i)
5 y(i) = sT (i)ŵ(i� 1)
6 e(i) = d(i)� y(i)
7 �(i) = �r(i� 1) + e(i)s(i)
8 R(i)�w(i) = �(i) ) �ŵ(i), r(i)
9 ŵ(i) = ŵ(i� 1) +�ŵ(i)

IV. RESULTS
In this section, we compare the new RLS-DCD algorithm

with RLS, NLMS and APA for the identification of a
Volterra model. The true plant in our simulation has a
linear part plus a 2nd-order term, N = 20 and K = 4.
The input signal x(i) is white Gaussian noise with unit
variance, independent of the measurement noise v(i). The
desired signal is given by

d(i) = w

T
opts(i) + v(i) (19)

where wopt is the optimum coefficient vector (chosen ran-
domly from a standard Gaussian distribution), and v(i)
is white Gaussian noise with variance �2

0 . The forgetting
factor is � = 1� 2�6 and R(0) = (1/�) · I, where I is the
identity matrix of appropriate size.

For the RLS-DCD algorithm, we use the same value of �,
H = 64 and Mb = 16. The simulation in Fig. 2 compares
the mean square deviation (MSD = E{kw � woptk2}) of
the RLS and RLS-DCD with the same values of N = 20
and K = 4, so from (11), M = 110. We choose Nu to
be 4 or 8, and include a change in the system coefficients
at the middle of the simulation to compare the tracking
performance of the algorithms. We use 100 simulations to
obtain the ensemble-average learning curves.

We see from Fig. 2 that the performance of the RLS-DCD
algorithm is already close to that of the standard RLS, even
when using Nu as small as 4.

Fig. 3(a) and 3(b) compare the number of additions
necessary for NLMS, RLS, APA with � = 4 and � = 35
and RLS-DCD. For this comparison we use Nu = 4,
Mb = 16 as in Fig. 2, but vary the memory depth N for
fixed K = 4 in Fig. 3(a), while in Fig. 3(b) we fix N = 20
and vary the maximum cross-term delay K. As we can see,
the number of additions is in most cases smaller than that
obtained with APA with � = 4, and much smaller than the
number of additions needed by RLS and APA with � = 35.
The number of multiplications behaves similarly.
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Fig. 2. MSD and tracking performance comparison between
RLS and RLS-DCD when estimating a Volterra model,
using Mb = 16, N = 20, K = 4 and M = 110.

Another simulation was performed by comparing the
performance between RLS, RLS-DCD, NLMS and APA.
For this simulation we used the same parameters as in Fig. 2
for RLS and RLS-DCD, and a step-size µ = 0.8 for NLMS,
µ = 0.31 and µ = 0.023 for APA with projection orders
� = 4 and � = 35, respectively. As we can see in Fig. 4(a)
(APA, � = 4) and Fig. 4(b) (APA, � = 35), both NLMS
and APA have slower convergence when compared to the
RLS and RLS-DCD algorithms.

V. CONCLUSION

In this paper, we propose a DCD-based Volterra RLS
algorithm with reduced computational complexity, exempli-
fying the method using second-order Volterra kernels. When
the maximum delay K in the cross-terms of the Volterra
kernel is kept small, the computational complexity of the
new algorithm grows linearly with the filter length and is
comparable with the complexity of a low order APA.

We compared the new algorithm with standard RLS,
NLMS and APA, showing that the same steady-state MSD
from RLS can be achieved using the RLS-DCD algorithm,
but with fastest convergence when compared to NLMS and
APA (even for an APA order as high as � = 35).
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