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ABSTRACT

Modern signal processing methods rely strongly on Bayesian
statistical models to solve challenging problems. This pa-
per considers the objective comparison of two alternative
Bayesian models, for scenarios with no ground truth avail-
able, and with a focus on model selection. Existing model
selection approaches are generally difficult to apply to signal
processing because they are unsuitable for models with pri-
ors that are improper or vaguely informative, and because of
challenges related to high dimensionality. This paper presents
a general methodology to perform model selection for models
that are high-dimensional and that involve proper, improper,
or vague priors. The approach is based on an additive mixture
meta-model representation that encompasses both models
and which concentrates on the model that fits the data best,
and relies on proximal Markov chain Monte Carlo algorithms
to perform high-dimensional computations efficiently. The
methodology is demonstrated on a series of experiments re-
lated to image resolution enhancement with a total-variation
prior.

Index Terms— Statistical signal processing; Bayesian in-
ference; model selection; Markov chain Monte Carlo; compu-
tational imaging

1. INTRODUCTION

Modern signal processing (SP) methods rely on statistical
models and inference methods to solve SP problems (we use
SP here to cover all relevant statistical signal, image and mul-
timedia processing problems). Most problems considered in
the literature involve inference on an unknown signal of inter-
est from some observed raw data. Despite the wide range of
different problems and of different applications considered,
all statistical SP methods proceed in essentially the same
way: first the specification of a statistical model relates the
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observation with the unknown, followed by a statistical in-
ference procedure conditional on the modelling assumptions
(typically point estimation by using maximum likelihood or
Bayesian strategies). Of course, the choice of the statistical
model has a significant impact on the estimation results, and
hence the development of ever more accurate and application-
specific models is the focus of perpetual research effort.

An important related question, which we investigate in
this paper, is how to objectively compare two competing mod-
els and decide which one is the most suitable for analysis of
a given dataset [1]. The statistical SP community has tradi-
tionally addressed this issue by conducting benchmark exper-
iments and reporting measures of estimation accuracy with
respect to some ground truth (e.g. mean-squared-error of the
estimation). This approach has some important limitations,
particularly it cannot be applied in real data settings where no
ground truth is available (as well as some other minor issues
such as potentially conflicting performance metrics) [2].

This paper considers the problem of objectively com-
paring two alternative Bayesian models without reference
to ground truth. The Bayesian framework provides several
ways of performing model selection or model comparisons
(see [3, Sec. 1] for a survey on this topic and [4] for a recent
application in signal processing). However, to the best of
our knowledge these are unsuitable for many important SP
problems because they cannot be applied to models involv-
ing improper priors or vaguely informative priors, which are
ubiquitous in modern SP (this difficulty arises because the
model’s evidence or marginal likelihood is either not defined
or takes arbitrary values). The method presented in this paper
is based on the new Bayesian hypothesis testing framework
recently introduced in [3], which allows the use of improper
and vaguely informative priors.

2. PROBLEM STATEMENT

Consider the estimation of a high-dimensional signal of in-
terest x ∈ Rn from some observation y ∈ Rp, related to
x by a statistical model with likelihood function f0(y|x).
Suppose that the recovery of x from y is ill-posed or ill-
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conditioned, and that we address this difficulty by following a
Bayesian approach [1]. More precisely, we model x as a ran-
dom vector with prior distribution p0(x) promoting solutions
with expected structural or regularity properties (e.g., sparsity
or smoothness), and combine observed and prior information
by using Bayes’ theorem, leading to the posterior distribution

M0 : p0(x|y) =
f0(y|x)p0(x)∫

Rn f0(y|u)p0(u)du
, (1)

which represents the knowledge about x after observing y
under the assumption of the Bayesian modelM0 = {f0, p0}.

From a methodological viewpoint, once the posterior
p0(x|y) is properly specified, the estimation of x can be
straightforwardly addressed by Bayesian point estimation
[e.g., by computing the minimum-mean-squared-error es-
timator x̂MMSE =

∫
Rn xp0(x|y)dx, or the maximum-a-

posteriori estimator x̂MAP = argmaxx∈Rn p0(x|y)] [1].
Now consider an alternative Bayesian model M1, with

likelihood function f1(y|x′), prior p1(x′), and posterior dis-
tribution given by

M1 : p1(x′|y) =
f1(y|x′)p1(x′)∫

Rn f1(y|u)p1(u)du
. (2)

Note that we use x ∈ Rn in (1) and x′ ∈ Rn in (2) to
represent explicitly that each model may involve a different
parametrisation of the signal of interest, in addition to differ-
ent likelihood and prior distributions for the unknown.

This paper considers the problem of objectively com-
paring the two Bayesian models M0 and M1 in the case
where there is no ground truth available, x and x′ are high-
dimensional, and the priors p0(x) and p1(x′) are either
improper or vaguely informative. As explained previously,
Bayesian model comparison for these types of models, ubiq-
uitous in statistical SP, is a very challenging problem.

3. BAYESIAN MODEL COMPARISON METHOD

This section presents a new Bayesian approach for comparing
intrinsically (i.e., without ground truth available) two alterna-
tive high-dimensional Bayesian models M0 and M1. The
approach is based on the Bayesian hypothesis testing frame-
work recently introduced in [3], and on the proximal Markov
chain Monte Carlo computation framework [5]. For simplic-
ity, in this paper we focus on models with priors with k-
homogenous regularisers, and in which the elements of y are
conditionally independent given x or x′. However, the re-
sults presented hereafter can be easily generalised to models
involving dependent observations, as well as other types of
priors (see [3] for more details).

3.1. Specification ofM0 andM1

The model comparison approach considered in this paper is
useful for pairsM0 andM1 that verify the following condi-

tions. First, we assume that the observations y are condition-
ally independent given x and x′, and consequently that the
likelihoods f0(y|x) and f1(y|x′) factorise as follows

f0(y|x) =

p∏
j=1

f0(yj |x), f1(y|x′) =

p∏
j=1

f1(yj |x′) (3)

where yj denotes the j-th element of y, and f0(yj |x) and
f1(yj |x′) its marginal likelihood under model M0 and M1

respectively. This property holds for all models involving in-
dependent (i.e., white) noise. Second, we assume that the
priors p0(x) and p1(x′) can be expressed as follows

p0(x) ∝ exp {−λ0h(x)},
p1(x′) ∝ exp {−λ1h(x′)},

(4)

for some λ0 ∈ R and λ1 ∈ R, and a common prior sufficient
statistic or regulariser h : Rn → R that is k-homogenous (we
say that h is k-homogenous if there exists k ∈ R+ such that
h(ηx) = ηkh(x) ∀x ∈ Rn,∀η > 0). Notice that (4) holds
for all norms (e.g., `1, `2, total-variation, nuclear, spectral,
etc.), composite norms (e.g., `1 − `2), and compositions of
norms with linear operators (e.g., analysis regularisers of the
form ‖Ψx‖1), all of which are 1-homogenous [6]. Similarly,
power of norms with exponent q are q-homogenous.

Finally, for computational tractability, we assume that the
joint densities f0(y|x)p0(x) and f1(y|x′)p1(x′) admit a de-
composition

f0(y|x)p0(x) = exp {s0(x)− g0(x)},
f1(y|x′)p1(x′) = exp {s1(x′)− g1(x′)},

(5)

such that s0 and s1 are continuously differentiable functions,
and g0 and g1 are lower-semicontinuous convex functions
with tractable proximal operators1.

Notice that assumptions (3), (4), and (5) hold for many
Bayesian models that are widely used in statistical SP. For
example, they hold for all models of the form

p(x|y) ∝ exp {−‖y −Ax‖22/2σ2 − λφ(x)},

where A ∈ Rp×n is a linear observation operator, σ > 0,
and φ is a k-homogenous convex regulariser whose proximal
operator is known analytically or can be computed efficiently
with a specialised algorithm.

3.2. Bayesian comparison ofM0 andM1

In a manner akin to [3], we first reparametriseM1 such that
x and x′ have the same prior distribution (this enables the
use improper and vaguely informative priors). Because p0(x)
and p1(x′) verify (4) this can be achieved straightforwardly

1The proximal operator of a lower-semicontinuous convex functions
g : Rn → (−∞,∞] at a point x ∈ Rn is defined as proxg(x) =
argminu∈Rn g(u)− ‖x− u‖22 [7].
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by using the scaling transformation x′ = (λ0/λ1)−kx. We
denote the reparametrised likelihood function and prior for
M1 as f1(y|x) and p1(x) respectively.

Following on from this, we define a single Bayesian meta-
model encompassing M0 and M1. We introduce a model-
selection auxiliary variable α ∈ [0, 1] and construct the aug-
mented posterior

p(x, α|y) ∝ f01(y|x, α)p(x)p(α) (6)

where the likelihood f01(y|x, α) arises from the additive
mixture representation

f01(y|x, α) =

p∏
j=1

[(1− α)f0(yj |x) + αf1(yj |x)],

and where f0(yj |x) and f1(yj |x) are the marginal likelihoods
of yj given x under each model [notice that f01(y|x, α =
0) = f0(y|x) and f01(y|x, α = 0) = f1(y|x)]. The prior
p(x) = p0(x) = p1(x) because of the reparametrisation of
M1. In order to achieve model selection -as opposed to model
averaging- the prior on α should concentrate on 0 and 1. Fol-
lowing [3], we use the symmetric beta prior α ∼ Beta(a0, a0)
with a0 � 1 (in our experiments we used a0 = 0.1).

Finally, in order to perform model selection we focus on
the marginal posterior distribution

p(α|y) =

∫
p(x, α|y)dx, (7)

which measures the degree of support of y for M0 (if α|y
concentrates on 0), for modelM1 (if α|y concentrates on 1),
or for both (if α|y concentrates equally on 0 and 1) [3].

3.3. Computation of p(α|y)

The marginal density (7) is generally computationally in-
tractable due to the high dimensionality of x. In this paper
we address this difficulty by using a stochastic simulation
algorithm to generate a set of samples α(1), . . . , α(M) dis-
tributed according to (7), which then enables the approx-
imation of posterior probabilities and expectations w.r.t.
p(α|y) by Monte Carlo integration [8, 9, Ch. 3]. More
precisely, we use a Metropolis-Hastings (MH) Markov chain
Monte Carlo (MCMC) algorithm to generate a set of samples
(x, α)(1), . . . , (x, α)(M) distributed according to the joint
posterior p(x, α|y), and then obtain samples from p(α|y)
by implicit marginalisation by only recording the coordinate
associated with α (this also greatly reduces the algorithm’s
memory footprint) [9].

The algorithm proceeds in an iterative manner as follows.
First, following a Gibbs scheme, at each iteration x and α are
updated alternatively by using two different MH kernels tar-
geting the conditional distributions p(α|y,x) and p(x|y, α)
respectively. The kernel for p(α|y,x) is an independent MH

step using the prior p(α) as proposal [8], which has most of
its mass close to 0 and to 1. The choice of the kernel for
p(x|y, α) is significantly more challenging because of the
high dimensionality of x. An important aspect of the pro-
posed approach is the use of a proximal MH kernel based on
the following proposal

q(·|x) =
1

2
N [proxδg1(x) + δ∇s1(x), 2δIn]

+
1

2
N [proxδg2(x) + δ∇s2(x), 2δIn] ,

(8)

that combines the two proximal Langevin proposals associ-
ated with M0 and M1 [5]. Since we expect that α|y will
concentrate on 0 or on 1, and that the proximal Langevin pro-
posals are very efficient for simulating individually fromM0

andM1 in high-dimensional scenarios, we anticipate that the
scheme will perform well. The proposal parameter δ > 0
is adjusted by cross-validation to achieve a stationary accep-
tance probability of approximately 25% to optimise the over-
all convergence properties of the algorithm [5].

4. EXPERIMENTS

4.1. Bayesian image deconvolution model

In this section we illustrate the proposed methodology on a
Bayesian image deconvolution problem with a total-variation
prior. In this canonical inverse problem the goal is to recover
a high-resolution image x ∈ Rn from a blurred and noisy ob-
servation y ∈ Rn related to x by y = Hx + w, where H is
a blurring operator and w ∼ N (0, σ2In). This inverse prob-
lem is ill-posed, a difficulty that Bayesian image deconvo-
lution methods address by exploiting prior knowledge about
x. Here we use a total-variation norm prior [10], which is a
widely used model for this type of problem [11]. The result-
ing posterior density is log-concave and is given by

p(x|y) =
exp

[
−(‖y −Hx‖2/2σ2 + λ‖∇dx‖1−2)

]
Zy

, (9)

where ‖ · ‖1−2 is the composite `1 − `2 norm, ∇d is the two-
dimensional discrete gradient operator, and Zy is the distri-
bution’s normalising constant. Notice that the total-variation
prior is improper because it is invariant to additive shifts of
x. It is easy to check that (9) verifies the three assumptions
(3), (4), and (5) necessary to apply the proposed method: the
likelihood factorises as f(y|x) =

∏p
j=1 f(yj |x) with

f(yj |x) = (2πσ2
0)−1/2 exp {−(yj − hjx)2/2σ2

0},

where hj ∈ R1×n is j-th row of H; the regulariser h(x) =
‖∇dx‖1−2 is 1-homogenous; and (9) admits the decompo-
sition (5) with s(x) = −‖y − Hx‖2/2σ2 Lipschitz con-
tinuously differentiable and g(x) = λ‖∇dx‖1−2 lower-
semicontinuous convex, with proximal operator available by
using the specialised algorithm [12].
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4.2. Comparison of Bayesian and SURE selection of reg-
ularisation parameters

In this first experiment we illustrate the proposed model com-
parison approach in the context of methods to select regu-
larisation parameters. The goal is to recover the Boat im-
age of size n = 256 × 256, which we degraded with a uni-
form blur operator of size 5 × 5 and additive white Gaus-
sian noise with σ = 0.5 (this blurred image is depicted in
Fig. 1(a)). We consider a comparison between two instances
of model (9) involving different values for the total-variation
regularisation parameter λ. In model M0 we use the value
λ0 = 0.0045 obtained by using the Bayesian approach re-
cently proposed in [6], whereas in model M1 we use the
value λ1 = 0.0032 obtained with the state-of-the-art SUGAR
method [13] (which is based on the minimisation of a sur-
rogate of the estimation mean-squared-error). Fig.1(b) and
Fig.1(c) show the maximum-a-posteriori estimate obtained
with each model, which we computed by using a generalised
forward-backward optimisation algorithm [14] (we used the
MATLAB implementation of [13]). As expected, we observe
that both models have restored the fine detail and sharp edges
in the image, confirming the good performance of the meth-
ods.

(a) (b)

(c) (d)

Fig. 1. (a) Blurred Boat image of size 256 × 256 pixels (uniform
5× 5 blur, σ = 0.5), (b) MAP estimate ofM0 given by (9) with the
true blur and with λ0 = 0.0045 (calculated with the method [6]),
(c) MAP estimate of M1 given by (9) with the true blue and with
λ1 = 0.0032 (calculated with SUGAR [13]), (d) MAP estimate of
M1 given by (9) with a misspecified uniform blur of size 6×6 pixels
and λ1 = 0.0030 (calculated with the method [6]).

We argue that the estimate obtained withM0 by using the
Bayesian approach [6] is more accurate than the one obtained
withM1 by using SUGAR [13] (this is related to the fact that

Fig. 2. Histogram approximation of p(α|y) for the experiment
comparing the methods [6] and [13] to select the value of λ in (9).
Notice that α|y concentrates on 0, supporting the hypothesis that the
model associated with [6] is more accurate than that of [13].

SUGAR minimises a projection of the mean-squared-error).
However, it is very challenging to provide evidence to support
this claim without the availability of a ground truth. Currently
the predominant approach is to compare the modelsM0 and
M1 objectively, and in this case the two techniques to select
the value of λ, compute an estimate of the performance metric
with respect to the ground truth. For example, in this experi-
mentM0 achieved a peak-signal-to-noise-ratio (PSNR) value
of 32.7dB, whereasM1 produced a PSNR value of 32.2dB,
supporting the claim thatM0 is more appropriate for data y.

We now suppose that there is no ground truth available
and we use the proposed model comparison approach to
evaluate M0 and M1 intrinsically. We reparametrise M1,
construct the mixture representation described in Section
3.2, and use the MCMC approach of Section 3.3 to generate
M = 100 000 samples α(1), . . . , α(M) distributed according
to p(α|y) (these samples were generated from a chain of
150 000 iterations including an initial burn-in stage of 50 000
iterations which were discarded). Fig. 2 shows the histogram
approximation of p(α|y). We observe that α|y is strongly
concentrated on 0 (posterior median α̂ = 6 × 10−8), clearly
supporting the hypothesis that modelM0 is more appropriate
to analyse data y thanM1.

4.3. Comparison of two blurring operators

In this second we consider a comparison between two image
deconvolution models (9) with different point spread func-
tions. Model M0 remains unchanged from Section 4.2, but
M1 is now defined with a misspecified linear operatorH1 as-
sociated with a uniform blur of size 6×6 pixels (as opposed to
H0 which corresponds to a uniform blur of size 5× 5 pixels),
and with the regularisation parameter λ1 = 0.0030 obtained
by using the Bayesian technique [6]. Fig. 1(d) shows the
maximum-a-posteriori estimate obtained withM1 (recall that
the estimator for M0 is depicted in Fig. 1(b)). We observe
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Fig. 3. Histogram approximation of p(α|y) for the experiment
comparing two different blur operators and values of λ in (9). Notice
that α|y concentrates strongly on 0, which corresponds to the model
with the true blur operator used to generate y.

that despite the fact that the likelihood is not correct,M1 has
nevertheless restored the fine detail in the image, showing that
the Bayesian model is robust to mild misspecification and that
identifying the correct model is challenging.

Assuming that there is no ground truth available, and us-
ing the same setup as in Section 4.2, we use the proposed ap-
proach to compareM0 andM1 intrinsically. Fig. 3(b) shows
the histogram approximation of p(α|y) for this comparison.
We observe that α|y is correctly concentrated on 0 (posterior
median α̂ = 1×10−8), the model with the correct likelihood,
and provides strong evidence that modelM0 is more appro-
priate to analyse data y thanM1, which has a likelihood that
is mildly misspecified.

5. CONCLUSION

This paper has presented a Bayesian methodology to ob-
jectively compare two alternative or competing Bayesian
models, where no ground truth is available with a focus on
model choice. An important advantage of the method is that
it can be applied to Bayesian models with proper, improper,
or vaguely informative priors with convex regularisers that
are k-homogenous, a class of priors that is widely used in
statistical signal processing and is beyond the scope of other
Bayesian model comparison approaches. The method can be
easily applied to high-dimensional models by using modern
proximal Markov chain Monte Carlo simulation techniques.
The proposed approach was illustrated on two challenging
model comparisons related to image deconvolution, where it
correctly selected the most accurate models without using any
form of ground truth. Future work will focus on a detailed
theoretical analysis of the proposed method and inference
algorithm, on generalisations to K-model comparisons by
using a K-mixture model representation, and on applications
to computational imaging problems in which there is sig-

nificant uncertainty about the model that should be used to
analyse the observed raw data.
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