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Abstract—In this paper we consider the problem of learning
the genetic-interaction-map, i.e., the topology of a directed
acyclic graph (DAG) of genetic interactions from noisy double
knockout (DK) data. Based on a set of well established biological
interaction models we detect and classify the interactions between
genes. Furthermore, we propose a novel linear integer optimiza-
tion framework called Genetic-Interactions-Detector (GENIE) to
identify the complex biological dependencies between genes and
to compute the DAG topology that matches the DK measurements
best where we make use of the well known branch-and-bound
(BB) principle. Finally, we show via numeric simulations that
the GENIE framework clearly outperforms the conventional
techniques.

Index Terms—Genetic interactions analysis, large scale gene
networks, discrete optimization, big data

I. INTRODUCTION

Genetic interaction analysis aims at uncovering the inter-
actions among a set of genes with respect to a specified cell
function of a biological system, e.g., bacteria. The interac-
tions among the genes under study are well described by a
directed-acyclic-graph (DAG) where the hierarchical relation-
ship among two genes of a DAG describe their hierarchical
interaction type. However DAGs cannot be observed directly
but only the specified cell function under study which yields
observable phenotypes. The role of the studied genes in the
cell machinery, the hierarchical interaction types of the genes,
as well as the DAG, which describes the latter ones, can
only be learned by means of knock-out experiments where
a gene or a set of genes is functionally switched off and
the phenotype is observed. Traditionally, only single-knock-
out (SK) experiments haven been conducted but those mainly
allow for a statement about the importance of a single gene
for the investigated cell process and do not convey much
information about the interaction among the genes under study.
Recently with the technological advances in micro arrays and
the development of the synthetic-genetic-array technologies
[7] new approaches have been taken that are based on large
scale knock-out experiments of pairs of genes. Such double
knock-out (DK) experiments are much more powerful for
exploring genetic interactions since a DK phenotype of an
arbitrary pair of genes generally differs considerably from the
superposition of the corresponding SK phenotypes of this pair
of genes. According to [6], the gene pairs can be classified to
one out of five hierarchical relationship classes based on their
SK and DK phenotypes. Further, based on the hierarchical
relationship classes the DAG underlying the observed SK

and DK phenotypes can be computed which directly reflects
the genetic interactions among the genes. In order to detect
the DAG underlying the SK and DK phenotypes a variety
of statistical methods based on scoring the measurements
or on Pearson correlation of the genetic-interaction (GI)-
profile, e.g. [1]-[5] respectively, have been developed. Al-
though showing poor performance, methods as those presented
in [1]-[5] are the most commonly used methods to detect
the DAG underlying the measured DK data. In contrast to
that, we propose an approach that is based on the biological
system model of [6]. Since the hierarchical relationship classes
are mutually dependent classifying each pair of genes to a
specific hierarchical relationship class corresponds to a multi-
hypotheses. Thus, we formulate this multi-hypotheses test
as a linear integer optimization program in order to find
the set of hierarchical relationship classes, best matching the
observed SK and DK phenotypes. Based on the detected set
of hierarchical relationship classes, the set of edges of the
DAG which reflects the interactions among the genes can be
computed.
This paper is organized as follows. We first summarize the
biological system model of [6], present in Section 3 the
Genetic-Interactions-Detector (GENIE)-framework of detect-
ing the set of hierarchical relationship classes, that represents
a valid DAG and matches the DK measurements best, and
continue with presenting numerical results which demonstrate
the performance of our algorithm. Finally, we summarize the
key parts of this paper and give a brief outlook on future work.

II. SYSTEM MODEL

In this section we first provide a mathematical description
of a DAG as well as its biological implications. Furthermore,
we introduce the common biological terms and follow with
the model of [6] where we provide an intuitive interpretation
of how to read and interprete a DAG of a genetic interaction
map.
The functional dependencies among a set of genes G =
{g1, ..., gG}, with G = |G| elements, for a given cell process
and specie can be well described by a genetic-interaction-map
(GI-map,[9],[10]) which is essentially a DAG with a common
root node, i.e., the reporter level R. In particular, an arbitrary
DAG D can be described as a graph D = (GD, ED) with
the set of nodes GD = {G ∪R} and the set of directed edges
ED =

{
{gi, gj} , ..., {gj , gl}

}
where edge {gi, gj} denotes an

edge from gene gi to gene gj . As the genetic interactions can
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Fig. 2: Possible hierarchical relationship classes between two arbitrary genes i, j of DAG D according to [6]
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Fig. 1: DAG D0 of 13 genes and root node R

only be observed through the reporter all edges are always
orientated in such a way that each path parting from any
arbitrary gene gi ∈ G always terminates in the root node R
and any gene appears on the path at most once, i.e., there
exist no cycles in the graph. Hence, the DAG D is always
connected via its root node R. For the sake of notational
convenience, in most cases we write gene i when addressing
gene gi. The reporter node R is an artifical node in the
concept of a DAG and represents the measured phenotype
of the specific cell process under study. The term phenotype
generally describes the specific manifestation of a biological
attribute of an organism which can be observed, e.g., for
bacteria a common biological attribute is growth measured
in colony size, where a specific size of the bacteria colony is
a phenotype of this biological attribute. In order to provide a
better understanding of the information encoded in a DAG we
state a simple example based on DAG D0 displayed in Fig. 1.
In D0 there exists an direct edge from gene i0 to gene j0, i.e.
{i0, j0} ∈ ED0 , which indicates that the activity of gene i0
controls the activity of gene j0. Hence, gene i0 only affects
the phenotype via gene j0 and not directly. We emphasize that
in this model the existence of edge {i0, j0} in the DAG only
describes the functional dependency between genes i0 and j0

and not the quantitative effect of gene i0 on gene j0.
Denote R(i) ∈ R as the phenotype for a single gene i ∈ G
functionally switched off. In the same fashion we define
the phenotype for the DK of genes i, j ∈ G: j > i as
R(i, j) ∈ R. According to [6] we assume that each pair
of genes i, j ∈ G :j > i belongs to exactly one out of
five hierarchical relationship classes that are characterized in
Fig. 2. The hierarchical relationship classes k ∈ K = {1, ..., 5}
are defined according to the model µk(i, j) in which the single
knock-out phenotypes R(i) and R(j) are related with the DK
phenotype R(i, j). If the gene pair i, j ∈ G: j > i belongs
to the hierarchical relationship class k then the observed DK
phenotype R(i, j) is described by the model µk(i, j) of Fig. 2.
We remark that the five hierarchical dependency graphs in
Fig. 2 do not reflect the absolute adjacency relations, but the
hierarchical relations between genes i, j in DAG D. To clarify
this further, let us consider the example DAG D0 of Fig. 1.
All paths from gene i0 to node R pass through gene j0, i.e.,
they are in a linear pathway with gene i0 upwards of gene j0.
Thus the pair of genes i0, j0 belongs to class k = 1. Note that
with the same line of argument, we conclude that also genes
i0 and l0 belong to relationship class k = 1.
Since all paths from gene i0 to the reporter level R do not pass
through gene t0 and vice versa, genes i0 and t0 belong to the
hierarchical relationship class k = 3 as given in Fig. 2, which
states that genes i0 and t0 are independent of each other and
the DK phenotype amounts to R(i0, t0) = µ3(i0, t0). Finally,
let us inspect the structural relation between genes t0 and n0
in DAG D0. It is obvious that gene t0 has (at least) one path
to node R which does not pass through gene n0, i.e., genes
only having paths to R that do not pass through gene n0 do
not affect the activity of gene n0. Since there is (at least) one
other path from gene t0 to R passing through gene n0, we
can conclude that genes t0 and n0 belong to class k = 4.
Generally, there are strong implications among the hierarchical
relationship classes of [6], i.e., if some pairs belong to a
specific class then this has strong implications for all other
pairs. Let us consider the case that DAG D0 was not known
and only the hierarchical relationship classes for genes i0 and
j0, i.e., genes i0 and j0 belong to class k = 1, as well as
the hierarchical relationship class for genes i0 and g0, i.e.,
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genes i0 and g0 belong to class k = 1 were available. By
definition of the hierarchical dependency graphs in Fig. 2 and
the assumptions, that genes i0 and j0 belong to class k = 1
as well as that genes i0 and g0 belong to class k = 1, we
conclude that all paths from gene i0 to R pass through genes
j0 and g0. Thus, either all paths from gene g0 to R pass
through gene j0, or vice versa. Consequently, genes j0 and
g0 either belong to the hierarchical relationship class k = 1,
or k = 2. As we have emphazised by the example above,
generally if the hierarchical relationship class is known for
two arbitrary genes i, j ∈ G :j > i as well as for another
pair i, l ∈ G :l > i, then this has strong logical implications
on the hierarchical relationship classes genes j, l ∈ G :l > j
can belong to. Since we can interpret the classification of the
pairs of genes i, j ∈ G : j > i, based on their observed SK
and DK phenotypes R(i), R(j) and R(i, j), respectively, to
exactly one out of the five hierarchical relationship classes as
a coupled multi-hypotheses test, we address this problem in
the next section by a linear integer optimization program. The
proposed linear integer optimization program identifies the
set of hierarchical relationship classes, that represents a valid
DAG and matches the DK measurements best with respect to
the logical coupling between the classes.

III. GENIE-FRAMEWORK

In this section, we formulate the problem of classifying the
gene pairs i, j ∈ G :j > i into the classes of hierarchical
relationships based on the observed SK and DK phenotype
values as a linear integer optimization program. Furthermore,
we translate the logical implications among the hierarchical re-
lationship classes into constraints that ensure that the detected
set of hierarchical relationship classes represents a valid graph.
That is the detected set of hierarchical relationship classes
represents a graph which is a DAG as defined in Section 2.
In order to quantify the mismatch between the measured DK
phenotypes R(i, j) and the expected phenotype µk(j, j) under
the hypothesis that the gene pairs i, j ∈ G :j > i belong to
class k ∈ K given their respective SK values, we propose a
simple quadratic score [6] as given in Eq. (1):

sk(i, j) =
(
R(i, j)− µk(i, j)

)2
k ∈ K, ∀i, j :∈ G : j > i

(1)

Let us define the following selection variables

αk(i, j) =

{
1 if i, j are in class k
0 else

k ∈ K, ∀i, j :∈ G : j > i (2)

Then the GENIE problem of classifying the gene pairs i, j ∈
G :j > i into the set of hierarchical relationship classes, that
represents a valid DAG and matches the DK measurements

best can be formulated as

OGENIE :

min
{αk(i,j)}

G∑
i=1

G∑
j=i+1

( |K|∑
k=1

sk(i, j)αk(i, j)
)

(3a)

s. t. αk(i, j) ∈ {0, 1} ∀k ∈ K, ∀i, j ∈ G : j > i (3b)
|K|∑
k=1

αk(i, j) = 1, ∀i, j ∈ G : j > i (3c)

L =⇒ additional topology constraints (3d)

where AOGENIE =
⋃

∀i,j∈GD:j>i

{
αOGENIE
1 (i, j), ..., αOGENIE

5 (i, j)
}

denotes the solution to program OGENIE and the set of best
matching selection variables AOGENIE corresponds to the most
consistent pattern of hierarchical relationship classes. Program
OGENIE is a linear integer program which can be solved effi-
ciently by BB-methods [11]. The objective of program OGENIE
is to minimize the overall mismatch in classifying each gene
pair i, j ∈ G :j > i to one out of five hierarchical relationship
classes. The constraints in (3b) reflect the binary nature of
the selection variables, while (3c) represents a multiple choice
constraint that enforces the gene pairs i, j to select only one
hierarchical relationship class.

The set L in (3d) contains additional constraints to ensure
that the detected set of selection variables AOGENIE always
represents a valid graph, i.e., a DAG. In the following we
exemplarily derive topology constraints in set L. In order to
identify the numerous logical implications among the selection
variables αk(i, j), k ∈ K for all i, j ∈ G :j > i we proceed
in the following way. We first fix the assumption that genes
i, j ∈ G : j > i belong to class k = 1, i.e., α1(i, j) = 1.
Further we assume that genes i, l ∈ G : l > i belong
to class k

′
, i.e. αk′ (i, l) = 1. Then we derive the set of

classes K′′
that genes j, l ∈ G : l > j can belong to under

the assumptions made. In the following, we have formulated
the logical implications among the selection variables for
α1(i, j) = 1 as linear integer inequalities defined in constraints
(4a)-(4e) and summarize them as set L1

L1 =

{
α1(j, l) + α2(j, l) ≥ α1(i, j) + α1(i, l)− 1 (4a)
α2(j, l) ≥ α1(i, j) + α2(i, l)− 1 (4b)
α2(j, l) + α3(j, l) + α5(j, l) ≥
α1(i, j) + α3(i, l)− 1 (4c)
α2(j, l) + α4(j, l) ≥ α1(i, j) + α4(i, l)− 1 (4d)
α5(j, l) + α2(j, l) ≥ α1(i, j) + α5(i, l)− 1 (4e)}
∀i, j, l ∈ GD : l > j > i

where constraints (4a)-(4e) are convex after the continuous
relaxation of the selection variables αk(i, j),∀i, j ∈ G : j > i.
To explain the origin and the functionality of the constraints
in L1, let us further define a sub-genetic-interactions-map
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(SMAP) S as given in Fig. 3 according to the following
definition where we adopt the graph notation of [8]:
Definition:
Given a non-empty set of edges Ein and a non-empty set
of edges Eout. Graph S =

(
GS , ES

)
, with set of nodes GS

and set of edges ES , is a SMAP if the following conditions
are fulfilled: i) the graph S is acyclic and directed ii) there
∃ein ∈ Ein, eout ∈ Eout such that each path P through graph S
incides S via egde ein and leaves graph S via edge eout.

ein,1 ein,2

eout

S

Fig. 3: Example sub-GI-map S

The DAG D1, as displayed on the left-hand-side (LHS) Fig. 4,
consists of genes i, j and SMAPs S1 and S2. It is obvious
that genes i, j belong to class k = 1, i.e., α1(i, j) = 1.
Furthermore, all genes l ∈ GD1

\ {R} :l > j > i for which
α1(i, l) = 1 must be either located in SMAP S1 or S2. Hence
it follows from DAG D1 in Fig. 4 that the gene pair j, l is
either in hierarchical relationship class k = 1 or k = 2, i.e.,
α1(j, l) = 1 or α2(j, l) = 1.
This logical implication is directly reflected by constraint
(4a). Given α1(i, j) = 1 and α1(i, l) = 1 the right-hand-
side (RHS) of (4a) amounts to 1. In this case also the
(LHS) of (4a) becomes 1 to fulfill the inequality (4a). Thus
either α1(j, l) = 1 or α2(j, l) = 1. Reversely, assume that
α1(i, j) = 1 and α1(i, l) = 1 does not hold, then the RHS
of (4a) is less than 1, i.e., 0 or -1, while the LHS of (4a)
is always greater than 0. Hence, constraint (4a) is fulfilled
irrespectively of the choice of αk(j, l), i.e., constraint (4a)
enforces no logical implications.
Similarly for DAG D2 of the RHS of Fig. 4, it is obvious that
genes i, j belong to the hierarchical relationship class k = 1,
i.e., α1(i, j) = 1. All genes l ∈ GD2

\{R} :l > j > i which are
in a linear pathway upstream of gene i, i.e. α2(i, l) = 1, must
be located in SMAP S3. Hence it directly follows from DAG
D2 that also gene l must be in a linear pathway upstream of
gene j, i.e., α2(j, l) = 1. This logical implication is compactly
represented in constraint (4b). Under the assumption that
α1(i, j) = 1 and α2(i, l) = 1, the RHS of (4b) amounts to
1 enforcing α2(j, l) = 1, so that the LHS of (4b) equals the
RHS and the inequality in (4b) is fulfilled. Reversely, assume
that α2(i, l) = 0, then the RHS of (4b) is less than 1 and

hence the LHS of (4b) is always bigger than or equal to the
RHS irrespectively of the choice of αk(j, l), i.e., constraint
(4a) enforces no logical implications. We can proceed in the
same fashion to explain constraints (4c)-(4e). Furthermore,
with the same line of argument we can derive the sets Lk
for k ∈ K\1 which reflect the logical implications among the
selection variables under the assumptions that αk(i, j) = 1
for k ∈ K \ 1. However, due to space limitations we omit the
derivation of the full set of logical implications and refer the
interested reader to a future journal version of this paper. The

D1:

i

S1

j

S2

R

D2:

S3

i

j

R

Fig. 4: Schematically reduced DAGs

full set of topology constraints L in (3d) can be computed as

L =

|K|⋃
k=1

{Lk} . (5)

The totality of the computed selection variables, i.e., the set
AOGENIE , represents DAG D underlying the observed SK and
DK phenotpyes in a different domain. It can be theoretically
proven that this representation is not unique, i.e., the computed
selection variable pattern AOGENIE represents not only the true
DAG D, but also a set of similar DAGs which are in line with
the pattern AOGENIE , but have a minorly different set of edges
as the true DAG D. Based on the detected set of selection
variables, an estimate ÊD of the true set of edges ED of DAG
D can be computed.

IV. SIMULATION RESULTS

We have generated the ideal SK phenotypes R(i) ∈ R for
all i ∈ G as well as the ideal DK phenotypes R(i, j) ∈ R for
all i, j ∈ G :j > i according to the model of [6]. We compare
our method with the well known GI-profile similarity approach
([12],[6]), where the Pearson correlation between the GI-
profiles of genes i and j is computed and an edge in the DAG
is detected if the Pearson correlation is above a pre-defined
threshold tcorr, where the directionality is inferred from the
selection variable αk(i, j) corresponding to the least mismatch
model µk(i, j). Furthermore, we compare our method with
the solution of program OGENIE without considering set L as
a constraint, which means simply classifying each pair i, j to
the least mismatch scoring hierarchical relationship class based
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on the SK and DK phenotypes R(i) and R(i, j) respectively.
For the simulations, we consider a total of 10 genes in order to
limit the Monte-Carlo simulation time. In Fig. 5 we display the
percentage of erroneously detected edges Ded in the detected
DAG normalized to the true number of edges |ED| as defined
in Eq. (6) versus the SNR.

Ded =

(
ED
⋃
ÊD
)
\ ED

|ED|
(6)

In Fig. 5 we observe that in the low SNR regime, the
Pearson correlation based method performs best in terms
of erroneously detected edges, however it fails to improve
performance with increasing SNR, because for correct direc-
tionality information of the edges this approach relies on the
hierarchical relationship classes detected by method OGENIE
without considering L. In the high SNR regime, the proposed
GENIE-approach clearly outperforms the Pearson correlation
based method as well as the method which simply detects the
highest scoring class regardless of their coupling with other
classes. In Fig. 6 we display the percentage of missing edges
Dmis in the detected DAG normalized to the true number of
edges |ED| as defined in Eq. (7) versus the SNR, i.e.,

Dmis =

(
ED
⋃
ÊD
)
\ ÊD

|ED|
(7)

In Fig. 6 we observe that our proposed GENIE-approach
clearly outperforms the competing methods over the entire
SNR region. Particularly, the Pearson correlation based method
shows poor performance.

0 10 20 30 40
0

0.5

1

1.5

2

2.5

SNR in [db]

D
ed

ac
co

rd
in

g
to

E
q.

(6
)

Pearson correlation
OGENIE without L
OGENIE

Fig. 5: Ded versus SNR; tcorr = .8; 200 Monte Carlo runs

V. CONCLUSION AND OUTLOOK

In this paper, we have demonstrated the benefits of the
GENIE-framework over conventional techniques for detecting
the topology of the DAG which is underlying the SK and
DK data measured. Especially in the high SNR-regime, our
proposed algorithm outperforms the conventional techniques
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Fig. 6: Dmis versus SNR; tcorr = .8; 200 Monte Carlo runs

on simulated data. Future work may consider a robust modifi-
cation of the presented GENIE-approach with respect to noise
as well as an incorporation of correlation data into the GENIE-
framework in order to enhance the reliability of the detection
results even further.
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