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Abstract—A powerful and efficient model for nonlinear echo
paths of hands-free communication systems is given by the re-
cently proposed Significance-Aware Hammerstein Group Model
(SA-HGM). Such a model learns memoryless loudspeaker nonlin-
earities on a small temporal support of the echo path (preferably
the direct-sound region) and extrapolates the nonlinearities
for the entire echo path afterwards. In this contribution, an
efficient frequency-domain realization of the significance-aware
concept for nonlinear acoustic echo cancellation is proposed.
The proposed method exploits the benefits of partitioned-block
frequency-domain adaptive filtering and will therefore be re-
ferred to as Partitioned-Block Significance-Aware Hammerstein
Group Model (PBSA-HGM). This allows to efficiently model a
long nonlinear echo path by a linear partitioned-block frequency-
domain adaptive filter after a parametric memoryless nonlinear
preprocessor, the parameters of which are estimated via a
nonlinear Hammerstein Group Model (HGM) with the short
temporal support of a single block only.

I. INTRODUCTION

Since the first adaptive linear echo canceler for network

echoes in telephone lines [1], linear echo cancellation has

evolved to a key ingredient of almost any full-duplex speech

communication system. This has resulted in a multitude of
approaches to efficiently model, parametrize and estimate

even complex linear systems, such as the acoustic echo

paths in hands-free wideband telecommunication scenarios [2].

With increasing nonlinear distortions produced by miniatur-

ized amplifiers and loudspeakers in modern portable devices,

dedicated nonlinear echo-path models have emerged as an

important topic of research and motivated sophisticated ap-
proaches for nonlinear Acoustic Echo Cancellation (AEC)

based on Volterra filters [3]–[5], artificial neural networks [6],

[7], functional link adaptive filters [8] or kernel methods [9],

[10]. A very simple, yet effective model for nonlinear acoustic

echo paths is the cascade of a memoryless preprocessor

(modeling loudspeaker signal distortions) and a subsequent
linear system (modeling sound propagation through air) [11].

Due to its simplicity, this so-called Hammerstein Model (HM)

has been frequently employed [12]–[18] and will also be

used in this contribution. So will be a group of B parallel

HMs, referred to as Hammerstein Group Model (HGM). The

recently proposed efficient Significance-Aware Hammerstein

Group Model (SA-HGM) [17] combines the advantages of
HMs and HGMs.

In contrast to previous work, this contribution generalizes
the concept of Significance-Aware (SA) filtering [17], [18] to

efficient frequency-domain realizations by combining SA fil-

tering with Partitioned Block Frequency-Domain Filtering

(PBFDF) to provide a highly efficient nonlinear AEC. The re-

mainder of this paper is structured as follows: after introducing

the notation in Section II, the concept of SA filtering and its

application to HGMs is reviewed in Section III. Afterwards,
we propose an efficient frequency-domain implementation of

an SA-HGM in Section IV and verify its AEC performance

by a comparison to a linear filter and the computationally

more complex HGM in Section V. Finally, the manuscript

is summarized in Section VI.

II. NOTATION

Vectors are written as boldface lower case letters, matrices

are typeset with capital boldface letters, and the corresponding

frequency-domain quantities are marked by an additional

underline. Furthermore, a(k) ∗ b(k) and a(k) ⊛ b(k) denote

linear and cyclic convolution between time sequences a(k)
and b(k), respectively, where k is the discrete-time sample

index. Besides, A ⊙ B denotes element-wise multiplication

(Hadamard product), 〈a,b〉 stands for the scalar product aTb,

where (·)T is transposition, and (·)∗ denotes complex con-

jugation. Special matrices with an individual symbol are the

S × S identity matrix IS , the S × S all-zero matrix 0S , and
the windowing matrices

W01 =

[
0S 0S

0S IS

]

and W10 =

[
IS 0S

0S 0S

]

, (1)

setting the first or second half of a length-2S vector to

zero, respectively. Furthermore, DFTM{·} and IDFTM{·}
denote the M th-order Discrete Fourier Transform (DFT) and

its inverse, respectively, which are implemented efficiently as

fast Fourier transforms in practice.

III. ECHO-PATH MODELS AND SIGNIFICANCE-AWARE

FILTERING

In this section, commonly used echo path models are intro-

duced as a prerequisite before briefly reviewing the authors’

previous work on SA filtering [17].

A. Linear Echo Path Models

As the propagation of acoustic waves between loudspeaker

and microphone can be modeled very accurately by a linear
system, acoustic echo paths for high-quality playback and
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(a) HM with parametric preprocessor, performing weighted su-
perposition of B static nonlinearities.
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(b) Hammerstein group model (HGM) with B branches of HMs.
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(c) An SA-HGM, consisting of the HGM submodel (block α) modeling
only the direct-path lags of the RIR and a Hammerstein submodel (block
β) which covers the remaining temporal support of the RIR.

Figure 1. Block diagram of (a) an HM with parametric preprocessor, (b) an
HGM, and (c) an SA-HGM. The temporal support captured by a particular
linear system is indicated by non-white squares of a schematic impulse-
response vector below the system’s symbol.

recording equipment can be described in the discrete time

domain by a Room Impulse Response (RIR) h(k). In this case,

the input signal x(k) and the output signal y(k) are related by

the convolutive product

y(k) = x(k) ∗ h(k). (2)

However, miniaturization and the need for energy efficiency

of portable devices lead to nonlinearly distorting playback
equipment (e.g., loudspeakers and amplifiers) and thereby

render linear echo path models insufficient.

B. Hammerstein Model (HM)

Nonlinearities caused by the playback equipment as part

of the acoustic echo path can be modeled by a memoryless

nonlinearity f {·} (a memoryless preprocessor) prior to the

linear RIR h(k) [11]. This structure with the input/output

relation

y(k) = f {x(k)} ∗ h(k) = xpp(k) ∗ h(k) (3)

is commonly referred to as a Hammerstein Model (HM).

Actual implementations of Hammerstein echo path models

may employ parametric preprocessors of the form [17], [19]

xpp(k) =

B∑

b=1

wpp,b · fb {x(k)} , (4)

where B fixed nonlinear basis functions fb{·}, b = 1, . . . , B,

are weighted by expansion coefficients wpp,b (denoted as

preprocessor coefficients) and superimposed. This structure is
visualized by the block diagram in Fig. 1(a).

Note that the system output of such an HM does not exhibit

a simple linear dependency on each of the model parameters

(filter coefficients h(k) and preprocessor coefficients wpp,b),
but depends on the products of filter coefficients and prepro-

cessor coefficients. In general, employing the Minimum Mean

Squared Error (MMSE) criterion for deriving a joint estimator

for h(k) and wpp,b is not analytically tractable [16]. Thus, we

combine an HM estimating only the linear system h(k) with

an HGM from which the HM’s preprocessor coefficients wpp,b

are estimated (more details will be given in Sections III-C
and III-D).

C. Hammerstein Group Model (HGM)

Inserting (4) into (3) and exploiting the linearity of the

convolution allows to rewrite the input/output relation of the

HM as

y(k) =

B∑

b=1

fb {x(k)}
︸ ︷︷ ︸

xb(k)

∗ (wpp,b · h(k))
︸ ︷︷ ︸

hb(k)

. (5)

Obviously, the HM is realized in (5) as the sum of B parallel

branches with HMs with fixed nonlinearities fb{·} and linearly

dependent impulse responses hb(k), referred to as kernels in

the following. Such a group of parallel HMs, as visualized in

Fig. 1(b), can be categorized as HGM1. As main advantage

of the HGM, the fixed nonlinearities lead to an input/output
relation which is linear in the parameters (filter coefficients).

This allows the application of classical Least-Mean-Square

(LMS)-type algorithms [20] for estimating the HGM kernels

hb(k). Prominent examples for HGMs are the so-called power

filters [21], forming a subset of Volterra filters [22].

D. Significance-Aware Hammerstein Group Model (SA-HGM)

The SA-HGM [17] exploits the aforementioned equivalence

of an HM and an HGM for modeling one particular nonlinear

system. Furthermore, the SA-HGM exploits that the nonlin-

earities between loudspeaker and microphone signals can be

observed best for time lags of significant energy transmission

(e.g. the direct-path region of the impulse response).
The input/output relation of an entire SA-HGM system

(so-far non-adaptive) is visualized in Fig. 1(c). Therein, an

HGM submodel (block α) only models a small temporal

region of the RIR (green filter taps), whereas the remaining

temporal support of the RIR is then modeled by a single
HM submodel (block β). To adaptively identify such a

structure, estimates ĥ1(k), . . . , ĥB(k) and ĥ(k) for the impulse

responses h1(k), . . . , hB(k) and h(k) are adapted, respec-

tively, and the HGM submodel’s kernel estimates ĥb(k) are

employed to estimate the HM submodel’s memoryless nonlin-

ear preprocessor. In particular, as shown in [17], a least squares
estimate for the preprocessor coefficients can be obtained by

ŵpp,b =
〈ĥ1,ĥb〉
〈ĥ1,ĥ1〉

, (6)

where ĥb = [hb(0), hb(1), . . . , hb(M − 1)]T is the HGM

submodel’s estimate for the kernel of the bth branch2. An in-

depth description and visualization of the adaptation method

1Note that HGMs allow for independent kernels hb(k) in general.
2A time-dependence of ĥb due to their adaptive identification has been

omitted for the conciseness of notation.
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for a time-domain SA-HGM is given in [17]. This method

allows an efficient estimation of the preprocessor coefficients

and leads to significantly less computational complexity than
a time-domain HGM with the full temporal support (see

Fig. 1(b)).

IV. PARTITIONED-BLOCK SA-HGM (PBSA-HGM)

Different to time-domain adaptive filters, the complexity for

filter adaptation in the frequency domain is not determined by

the length of the time domain support of the filter, but by

the DFT order. This disqualifies classical frequency-domain

adaptive filters, as the HGM submodel in Fig. 1(c) would have

the same complexity as the HGM with full temporal support
in Fig. 1(b). This reveals partitioned block frequency domain

methods [23]–[26] as reasonable realization for the SA-HGM

structure from [17].

A. Partitioned Block Frequency-Domain Filtering (PBFDF)

A linear convolution, as in (2) and (3), can be realized

despite large filter lengths L with a low input/output delay effi-

ciently by block-based processing methods like PBFDF [23]–

[26], also known as multidelay convolution. In the following,
only a uniform partitioning with frame shift S and frame size

M = 2S < L will be considered.
In this case, the input signal x(k), the impulse response

h(k), and the output signal y(k) are partitioned into length-M
vectors

x(ν) = [x(νS −M + 1), . . . , x(νS)]
T

(7)

h(n) = [h(nS), . . . , h (nS + S − 1) , 0, . . . , 0]
T

(8)

y(ν) = [ 0, . . . , 0, y(νS − S + 1), . . . , y (νS)]
T
, (9)

respectively, where ν is the frame index for block processing

and n is the index of the impulse response partition. After a
DFT, transformed versions of the signal vectors and impulse

response partitions are referred to as

x(n)(ν) = DFTM{x(ν − n)} (10)

h(n) = DFTM{h(n)}. (11)

As outlined in Fig. 2 for N = 2 partitions, performing

fast DFT-domain convolution between each pair of h(n) and

x(ν −n) and summing up the respective partial results yields

y(ν) = W01 IDFTM

{
N−1∑

n=0

x(n)(ν) ⊙ h(n)

}

, (12)

where N =
⌈
L
S

⌉
is the number of non-zero impulse response

partitions and where the windowing matrix W01 according to

(1) suppresses additionally computed samples, most of which
contain cyclic convolution artifacts. Note that such a PBFDF

scheme is computationally efficient, because each input signal

frame’s DFT has to be computed only once.

B. Realization of the PBSA-HGM

In this section, a novel, efficiency-increased frequency-

domain realization of the SA-HGM will be developed based on

PBFDF and the Frequency-Domain Normalized Least-Mean-

Square (FNLMS) algorithm. One partition can be thought of

as covering two adjacent squares of the impulse responses in
Fig. 1 (e.g., green squares in HGM branches), in the following.

h(k)

L

n = 0

S

M

n = 1

x(k) y(k)

∗

⊛

⊛

=

=

=

Figure 2. Example for partitioned block convolution using N = 2 blocks
for partitioning the IR h(k): the summation during convolution is split into
N = 2 partial sums of length S. Each partition of h(k) produces a sequence
of S samples of its contribution to the convolutive product in an overlap-save
manner in the DFT domain, where the block length is M = 2S. Summing up
the second half of these partial results (free from cyclic convolution artifacts)
yields a block of S output samples.

1) Estimation of the RIR of the HM Submodel: Partitioning

the impulse response estimate according to the PBFDF scheme

of Section IV-A leads to time-domain partition vectors ĥ(n)(ν)
for the nth partition of room impulse response estimate at

frame ν, which become ĥ(n)(ν) after a DFT. With this, an

echo signal estimate vector can be obtained according to (12)

by

ŷHM(ν) =W01 IDFTM

{
N−1∑

n=0

x(n)
pp (ν)⊙ ĥ(n)(ν)

}

. (13)

Its deviation from the vector of actual microphone signal

samples, y(ν), is the error signal vector, the DFT of which
computes as

êHM(ν) = DFTM {(y(ν) − ŷHM(ν))} . (14)

Iteratively minimizing the two-norm of êHM(ν) leads to the

multidelay block frequency domain adaptive filter [27] update

rule of (15) on the next page, where S(n)(ν) is the inverse of

the diagonal matrix of the input signal energies in each DFT

bin at frame ν − n and where µ is the adaptation stepsize.
2) Estimation of the HGM Submodel: Furthermore, the

partitioning directly suggests to use the partition describing

the strongest energy transmission for the SA filtering: the

high-energy partition of the HM is replaced by an HGM with

B branches. Each branch b contains a DFT-domain estimate

ĥ
(d)
b (ν) of the bth kernel of the HGM, modeling the system

at the time lags covered by partition d with maximum energy.
With these notations, the PBSA-HGM yields the echo estimate

ŷSA(ν) = W01 IDFTM







B∑

b=1

x
(d)
b (ν)⊙ ĥ

(d)
b (ν)

+
∑

n∈{0,...,N−1}\d

x(n)
pp (ν)⊙ ĥ(n)(ν)






,

(16)

where the first sum in (16) corresponds to the output of

the HGM submodel (block α in Fig. 1(c)) and the second

sum corresponds to the remaining temporal support of the
RIR, captured by the HM submodel (block β in Fig. 1(c)).

Minimizing the resulting error signal

êSA(ν) = DFTM {(y(ν) − ŷSA(ν))} (17)

yields the update rule of (18) on the next page, where S
(d)
b (ν)

is the inverse of the diagonal matrix of the branch signal
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energies in each DFT bin in frame ν − n and where µ is

the adaptation stepsize. The reason for the unconventional

application of the windowing in (18) to the actual impulse
response partitions, unlike to the update term in (15), will

become obvious in the following paragraph.

3) Estimating the HM’s Preprocessor: Finally, the HM’s

preprocessor coefficients can be recomputed employing the

HGM. Although the unitarity of the DFT allows an evaluation
of (6) with DFT-domain vectors as well, we propose to

compute

wpp,b =
〈

ĥ
(d)
1 (ν), ĥ

(d)
b (ν)

〉/〈

ĥ
(d)
1 (ν), ĥ

(d)
1 (ν)

〉

(19)

from the time-domain kernels ĥ
(d)
b (ν). Note that this does

not imply additional Fourier transforms to obtain ĥ
(d)
b (ν) as

long as the filter constraint (enforcing zeros in ĥ
(d)
b (ν))

is not applied to the update, but to the filter coefficients

themselves (as done in (18)). Thus, the scalar products have

to be performed only between real-valued sub-vectors of

length S.

Thereby, the estimation of the nonlinear system has been

split up into two beneficially interacting subproblems (HM and
HGM adaptation), each of which now only linearly depends

on the coefficients to be estimated and can therefore be solved

elegantly by state-of-the-art adaptive filtering algorithms. The

beneficial interaction is achieved by the preprocessor coeffi-

cient refinement based on the HGM and by the extension of the

temporal support of the HGM employing partitions of the HM
- analogously to the time-domain solution in [17]. Note that

the computational savings of a PBSA-HGM over a Partitioned-

Block HGM (PB-HGM) with full temporal support include the

multiplications of the filtering operations and filter adaptation

for N−1 blocks and B−1 branches, while all branch signals

xb(k) still have to be transformed to the DFT domain. For a

large number of blocks, the overhead due to the DFTs for the
HGM’s branch signals becomes vanishingly small, such that

the ratio of the computational complexity of a PBSA-HGM

to a PB-HGM approaches a factor C ≈ (N + B)/(N · B).
For N = 10 partitions and B = 5 branches, this leads to a

complexity ratio of C ≈ 3
10 .

V. EXPERIMENTAL VERIFICATION

A. Experimental Setup

For the evaluation, about 130 seconds of double-talk free

speech are played back and recorded by a smartphone in

hands-free mode in a living-room like environment (Setup
A), as well as 80 seconds in an anechoic environment (Setup

B). Setups C and D are synthesized by convolving the

anechoic nonlinear recordings obtained from Setup B with

measured RIRs. For these setups, a partitioned-block linear

0 2 4 6 8 10 12 14 16 18 20

0

10

20

time [s]

E
R

L
E

[d
B

]

linear PB-HGM PBSA-HGM

Figure 3. Initial adaptation behavior of different PBFDF AEC methods for
Setup B during the first 20 s of the experiment.

filter (PB-HGM with a single linear branch), a PB-HGM (full
temporal support), and a PBSA-HGM will be compared. In

the following experiments, processing is done at a sampling

rate of fs = 16 kHz. The acoustic echo paths are estimated

with a memory length corresponding to L = 1024 taps and

the input signals and impulse responses are partitioned into

N = 4 blocks with a relative frame shift of S = 256
taps (implying M = 512). As in [17], the HGMs consist

of B = 5 branches, with odd-order Legendre polynomials

up to order 9 as nonlinear basis functions fb{·} in (4). The

kernels of both the full PB-HGM and the PBSA-HGM are

adapted with a stepsize of µ = 0.1 (see (15) and (18)) while

a stepsize of µ = 0.5 was chosen for the reference algorithm,

consisting of the linear filter, to account for the lack of multiple
adaptation branches. Furthermore, the adaptation process is

refined using the robust statistics described in [24], [28], which

hardly affects the computational complexity, but robustifies

the system identification against outliers in the error signal.

The AEC performance is quantified by computing the Echo-

Return-Loss Enhancement (ERLE)

ERLE = 10 log10

{

E
{
y2(k)

}

E {e2(k)}

}

dB, (20)

where the numerator is the power of the microphone signal
y(k) and the denominator is the power of the error signal e(k)
produced by the model to be evaluated (linear filter, PB-HGM,

PBSA-HGM).

B. Experimental Results

Figure 3 shows the ERLE during the initial adaptation phase
for different AEC structures, where the instantaneous estimates

of the signal powers in (20) are calculated from short intervals

of about 200ms.

As expected, the full 5-branch PB-HGM (green curve)
outperforms the linear filter without nonlinear preprocessor

(dashed blue curve). Furthermore, the system identification

achieved by the PBSA-HGM (red curve) is only slightly

reduced compared to the full PB-HGM. Additionally, average

ĥ(n)(ν + 1) = ĥ(n)(ν) + DFTM

{

W10 IDFTM

{ µ

N
S(n)(ν)

(

êHM(ν)⊙
(

x(n)
pp (ν)

)∗)}}

∀ partitions n (15)

ĥ
(d)
b (ν + 1) = DFTM

{

W10 IDFTM

{

ĥ
(d)
b (ν) + µ S

(d)
b (ν)

(

êSA(ν)⊙
(

x
(d)
b (ν)

)∗)}}

∀ branches b (18)
︸ ︷︷ ︸

ĥ
(d)
b (ν+1)
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Table I
PERFORMANCE COMPARISON OF PBFDF AEC METHODS AND RELATIVE

COMPUTATIONAL COMPLEXITY OF THESE FREQUENCY-DOMAIN (FD) AND

TIME-DOMAIN (TD) IMPLEMENTATIONS.

average ERLE in dB for Setup relative complexity

A B C D FD TD

linear 8.0 8.2 8.7 8.6 1.0 15.0
full HGM 13.1 14.8 14.4 14.0 4.1 52.5
SA-HGM 12.7 14.1 13.8 13.4 2.6 17.2

ERLE values, computed over the entire sequence, are given

in Table I for all setups defined in Section V. Obviously, the

full PB-HGM performs best for all investigated setups and the

PBSA-HGM consistently follows the PB-HGM performance

closely (only 0.4 dB to 0.7 dB less ERLE). This efficacy con-
firms the successful extension of the SA-HGM to frequency-

domain adaptive filters.
Regarding computation time (second last column in Table I)

on an Intel Core i7 CPU, employing the PBSA-HGM instead

of the full PB-HGM reduces the elapsed wall-clock time of the

MATLAB simulation (MATLAB R2015b) by about 37% for

the chosen parameter set. Note that the computational savings

become even larger for more partitions (M ≪ L), where the

adaptation of a single-partition HGM contributes even less
to the overall complexity (recall Section IV-B3). In general,

the frequency-domain implementations lead to significantly

reduced wall-clock time in comparison to their time-domain

equivalents [17] with according filter length, for which the

relative numbers are given in the last column of Table I.

VI. CONCLUSIONS

The SA-HGM algorithm has been extended to an even more
efficient partitioned-block frequency-domain version. Therein,

the SA concept seamlessly integrates into the partitioning

concept by facilitating the latter to implement the temporal

splitting of the acoustic echo path. The larger the number of

partitions, the more efficient the proposed PBSA-HGM be-

comes. While the echo reduction performance of the proposed
PBSA-HGM is very close to the performance of a PB-HGM

with full temporal support, the computational complexity is

reduced for the PBSA-HGM by about 37% in the experiments.
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[24] H. Buchner, J. Benesty, T. Gänsler, and W. Kellermann, “An outlier-
robust extended multidelay filter with application to acoustic echo
cancellation,” in Proc. Int. Workshop Acoustic Echo, Noise Control
(IWAENC), Kyoto, Japan, 2003, pp. 19–22.

[25] M. Zeller and W. Kellermann, “Self-configuring system identification via
evolutionary frequency-domain adaptive filters,” in Proc. Int. Workshop

Acoustic Echo, Noise Control (IWAENC), Aug. 2010.
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