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Abstract—We consider the problem of 3D multiple-input-
multiple-output (MIMO) orthogonal frequency-division multi-
plexing (OFDM) channel estimation, a key for the future devel-
opment of 3D beamforming techniques. Our main contribution is
a novel algorithm, namely the adaptive-LASSO, that can jointly
exploit the sparsity structure of the MIMO-OFDM channel in
the spatial and delay domains. The algorithm is designed to
handle large antenna arrays by means of a hybrid analog-digital
architecture. In this regard, we describe an effective beam-
switching strategy to sample the channel using a few analog
beamformers. We investigate the impact of the signal bandwidth,
antenna structures, line-of-sight (LOS) and non-line-of-sight
(NLOS) conditions via ray-tracing based simulations. Also, we
show that the A-LASSO can provide significant improvements
with respect to the legacy methods, e.g. least-square technique.

I. INTRODUCTION

The potentials of three dimensional (3D) multiple-input-

multiple-output (MIMO) technology to provide high user

capacity, better spectral efficiency, less intercell interference

and improved coverage are well known [1]. A key is the

usage of large-scale antenna arrays for 3D beamforming, i.e.,
adapt the radiation beam pattern in both elevation and azimuth

to provide more degrees of freedom in supporting users.

However, as the number of antenna elements grows, the cost

of a full digital approach can be prohibitive. For this reason,

an hybrid analog-digital architecture is often considered [2].

In addition to radio frequency (RF) implementation chal-

lenges, 3D MIMO quests for new channel estimation and

beamforming algorithms [3]. In this paper, the focus is on

the development of a robust 3D MIMO orthogonal frequency-

division multiplexing (OFDM) channel estimation method

constrained to the hybrid transceiver architecture shown in

Figure 1 [2]. More specifically, we propose the adaptive-

least absolute shrinkage and selection operator (A-LASSO)

algorithm and a beam switching technique to achieve fast

sensing with few analog beamformers. Key of the algorithm

is the utilization of an ℓ1 based optimization to exploit the

sparsity property of the channel [4]–[6], enhanced with the

utilization of large-scale antennas and high carrier frequencies.

The rest of the paper is organized as follows. In Section

II, we present the system model and the main assumptions.

In Section III, we describe the key contributions. In Sections

IV results based on ray tracing simulations are provided, and,

finally, in Section V concluding remarks are given.

Figure 1. Analog-digital architecture of the receiver

II. SYSTEM MODEL

We consider a MIMO-OFDM system in which B is the

maximum signal bandwidth, NFFT is the total number of

subcarriers, M and one is the number of receiving and

transmitting antennas, respectively. At the receiver, we assume

the hybrid analog-digital architecture depicted in Figure 1 [2],

where MB is the number of independent digital paths and each

digital path consists of an analog-to-digital converter (ADC),

amplifiers, an analog beamformer and m antenna elements.

Analog beamformers are implemented with phase-shifters and

a phase-shifter can control only one antenna element.

Mathematically, the aforementioned receiver architecture

can be modeled as follows. Let ai ∈ C
m be the analog

beamformer used in the ith digital path and let aji ∈ C,

with |aji| = 1, be the jth element of ai. We denote by

A ∈ C
M×MB the “total” analog beamformer matrix, that is

block-diagonal with the ith block given by ai. The digital

beamformer matrix is given by W ∈ C
MB×Mt , where Mt is

the number of combining digital beamformers.

The MIMO-OFDM channel is modeled as a frequency-

selective wideband clustered channel, in which Nc is the

number of clusters and Nq is the number of propagation paths

per cluster [4]. For the nth subcarrier, the channel is given by

hn =
√

M
NcNqNFFT

Nc
∑

c=1

Nq
∑

q=1

αq,caR(φq,c, θq,c)e
−j2πn

τq,cB

NFFT ,

(1)

where the index (·)q,c refers to p-th path of the c-th cluster,

φq,c, θq,c are the azimuth and elevation of the angle of arrival,

τq,c is path-delay, αp,c ∼ CN (0, σ2
p,c) is a complex Gaussian
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random variable modeling the complex gain of the path, σ2
p,c

is the energy path-gain and aR (x, y) is given by

aR (x, y) = e−j 2π
λ

k
T(x,y)P, (2)

where (·)T indicates transpose, λ is the carrier wavelength, P ∈
R

3×M is the matrix containing the (3D) location of antenna el-

ements1 and k(x, y) , [cos(x) cos(y), sin(x) cos(y), sin(y)]T.

Assume that N subcarriers are used for a MIMO-OFDM

transmissions, then the received signal can be obtained as

Y =
√
ρWHAH(HX+N), (3)

where ρ is the average received power, H , [h1, · · · ,hN ],
X ∈ C

N×N is a diagonal matrix in which the diagonal element

Xii ∈ C is the transmitted symbol over the ith subcarrier and

N ∈ C
Mt×N is the noise matrix with nij ∼ CN (0, 1) as a

complex-Gaussian random variable.

III. ESTIMATION OF THE MIMO-OFDM CHANNEL WITH

A-LASSO

We focus on the estimation problem of the MIMO-OFDM

channel given that X is known at the receiver and H has

a sparse representation [4]–[6], i.e, the angle of arrivals and

path-delays are few, distinct and within finite intervals. Let

Ψ ∈ C
NFFTM×L be a dictionary matrix, that is a matrix used to

represent the channel h , vec(H) as a linear combination of

L spatial-Fourier-frequencies [7], i.e., h = Ψz where z ∈ C
L

is referred to as the representation of h in Ψ.

Relying on the sparsity structure of the channel, we formu-

late a robust channel estimator using an ℓ1-model, e.g., the

least absolute shrinkage and selection operator (LASSO),

ẑ =min
z∈CL

ν‖z‖1+ 1
2‖y−(XST

f⊗WHAH)Ψz‖22, (4)

where ‖ · ‖q is the q-norm, ⊗ denotes the Kronecker product,

y ∈ C
MtN is the vector form of Y, ν is a parameter that

controls the sparsity (≈ 1/
√
NFFT, due to the fact that the

sparsity regularizer should be proportional to the noise spectral

density) and Sf ∈ R
NFFT×N is the “frequency selection”

matrix2 used to select the pilot frequency from the set of NFFT

subcarriers.

Given a dictionary Ψ, equation (4) can be efficiently solved

with numerous algorithms available in the literature, e.g. the

alternating direction method of multipliers (ADMM) [8]. How-

ever, in order to enhance sparsity and minimize the number of

observations (the number of elements in y), it is well-known

that both and Ψ and Φ = XST

f⊗WHAH need to be optimized.

For these reasons, new research is focusing on the development

of joint optimization methods of the sparse variable z and the

dictionary-sampling matrix ΦΨ [9], [10]. We propose a novel

algorithm, namely the A-LASSO technique that, in contrast to

the formulation in [11], is specialized to the case of MIMO-

OFDM channel estimation.

1Coordinates are relative respect to the location of one element.
2The n-th column of Sf has only one non-zero element, i.e., 1, at the

row-index corresponding to the n-th subcarrier index.

(a) A-LASSO step-1

(b) A-LASSO step-3

Figure 2. Progress of the dictionary optimization. Black and blue indicators
refer to the true (channel rays) and estimated sparse channel representations.
Red dots indicates the new support (atoms) obtained from the re-sampling.

A. A-LASSO Algorithm

The A-LASSO solves the optimization problem

(ẑ, Ξ̂) = min
z∈C

L

Ξ∈R
U×L

λ‖z‖1+ 1
2‖y − (XST

f⊗WHAH)Ψz‖22,

s.t. Ψ = D(Ξ), ξi ≤ ξij < ξ̄i, ∀ij, (5)

where D(Ξ) is the “dictionary function” defined as

D(Ξ) ,

[

U
⊗

i=1

v(ξi1,Ki), · · · ,
U
⊗

i=1

v(ξiL,Ki)

]

, (6)

with
⊗

indicating the “total” Kronecker product of U vectors,

ξij is the ij-th element of dictionary variable Ξ, ξi and ξ̄i are

the minimum and maximum value of ξij∀j, and v(x, y) is

v(x,K) =
[

1, · · · , e−j2πx(K−1)
]T

, (7)

with x ∈ [0, 1) and K ∈ N.
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More specifically, the dictionary represent a multidimen-

sional Fourier transform in which the columns are not nec-

essarily orthogonal. In fact, each column of the dictionary,

hereafter referred to as atom, can be uniquely associated

to a multi-dimensional Fourier frequency of a channel path

characterized by a specific delay, azimuth and elevation angle-

of-arrival (AoA) and angle-of-departure (AoD). The number

of atoms is given by L, which can be arbitrarily selected

to provide a sufficient sampling of the domain of Ξ. The

parameters U and K are specific to the choice of the antenna

structure (both at the transmitter and receiver) and the total

number of subcarriers. For instance, in [11], where a MIMO

transmission with uniform linear array (ULA) antennas both

at the transmitter and receiver was studied, U was equal to 2.

In this work, we set U = 3: two dimensions to describe the

spatial-frequency and one for the Fourier frequency. Finally,

if we consider a uniform rectangular array (URA) receiving

antenna with My×Mz elements deployed in the yz-plane, then

spatial and Fourier frequencies can be defined with vectors of

K1=My , K2=Mz and K3=NFFT elements, respectively.

The A-LASSO algorithm consists of alternating the mini-

mization of (5) for a fixed Ψ̂ with a dictionary optimization

until the objective function remains almost invariant (typically

three iterations). More specifically, the dictionary is updated

based on the randomization method described in [11]. The key

is the heuristic that the higher the value of |zi|, the higher is

the “importance” of the i-th atom in the dictionary. In fact,

the update method is to re-sample the atoms proportionally to

their weight and randomize their corresponding parameters ξ.

A careful implementation of the latter step is needed to avoid

atom repetition as well as very close atoms. Our approach is

to randomly select the new atoms over a fine grid such that

the objective function of (5) decreases.

Figure 2 shows an example of the aforementioned opti-

mization process. The result is obtained with SNR= 10dB,

NFFT = 2048, B = 200MHz, MB = 8 and M = 64. The

antenna structure is URA with My = 8 and Mz = 8 and,

each digital path controls 8 elements in the z-direction. The

black indicators refer to the true channel, whereas the blue

ones are obtained from the A-LASSO algorithm. The red dots

indicate the new atoms3 computed with the resampling. Figure

2(a) and 2(b) refer to the first and the third iteration of the

A-LASSO optimization. It can be noticed how the support of

the channel estimate concentrates around the black indicators.

B. Hybrid Beamforming

Let us focus on the design of Φ and in particular on the

hybrid beamforming Φ̄ , WHAH. As suggested in [12], the

optimal projection matrix Φ is the matrix that yields

ΨHΦHΦΨ ≈ IL, (8)
which in our case implies

ΨH
(

XST⊗Φ̄
)H (

XST⊗Φ̄
)

Ψ = ΨH
(

I⊗Φ̄HΦ̄
)

Ψ ≈ IL, (9)

3Notice that the axis corresponding to ξ3: is not plotted for the sake of
clarity. However, they can be recognized with the fact that multiple bars are
overlapped are the same location.

in which we have made the assumptions that |Xii| = 1, ∀i.
This is not a trivial problem as, in the A-LASSO, Ψ is

also a variable. However, if the paths are sufficiently isolated

and atoms are not highly correlated, it is sensible to assume

ΨHΨ ≈ I. Hence, (9) can be reduced to

Φ̄HΦ̄ = AWWHAH ≈ IM . (10)

Next, we write the explicit expression of Φ̄HΦ̄ using the block-

diagonal structure of A. We obtain

Φ̄HΦ̄ =















Mt
∑

i=1

|w1i|2a1aH

1 ·
Mt
∑

i=1

|w1iw
∗
MBi|a1aH

MB

...
...

...
Mt
∑

i=1

|wMBiw
∗
1i|aMB

aH

1 ·
Mt
∑

i=1

|wMBi|2aMB
aH

MB















,

(11)

where wij is the ij-th element of W and (·)∗ indicates the

complex-conjugate.

We notice that if W is a diagonal matrix, then Φ̄HΦ̄ is

block-diagonal. Also, we can recognize that the elements of

the i-th diagonal block have a constant magnitude as the

analog beamformers are implemented with phase-shifters only.

In the light of the above, it appears very challenging to find

a Φ̄ such that Φ̄HΦ̄ is almost an identity matrix. In order to

circumvent this problem, we propose a modification of the

structure of A. More specifically, we consider

Ā =
[

A0 A2 · · · AMB−1

]

, (12)

where Ak ∈ C
M×MB as a block-diagonal matrix with the j-th

diagonal block given by akj , where the k indicates a cycle-shift

of the index j by k positions, e.g. a24 = a2.

This structure corresponds to a measurement system with

beam switching, i.e., the analog beamformers are changed

during the measurement phase. In doing so, the i-th diagonal

block of Φ̄HΦ̄ is given by
MB
∑

j=1

|wii|2ajaH

j , in which the

kq-th off-diagonal term is no longer constant but a linear

combination of aika
∗
iq , ∀i. Thus, if MB is sufficiently large

and |aH

iaj | is small, ∀ij with i 6= j, then Φ̄HΦ̄ ≈ IM .

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

algorithm via ray-tracing based simulations. We consider an

office environment and study both LOS (Figure 3(a)) and

NLOS (Figure 3(b)) links. The pilot signal is transmitted at the

carrier frequency 28GHz, with a bandwidth Bp ≤ B = 200
MHz. The OFDM symbol is designed with 2048 subcarriers,

i.e., NFFT = 2048, of which only N are used for pilot. The

antenna at the receiver is modeled with a URA in the yz-

plane, with Mz rows of 8 elements deployed in the y-direction.

Antenna elements are equispaced by λ/2 both in the vertical

(z-axis) and the horizontal (y-axis) directions. The number of

digital paths is MB = 8, and each one controls a column

(sub-array in the z-direction) of the URA. Thus, m = Mz .

The receiver antenna covers a 3D sector defined with

(azimuth) φ ∈ [−π/4, π/4] and (elevation) θ ∈ [−π/4, π/4].
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(b) NLOS

Figure 3. Simulation scenario in office environment

At the transmitter, instead, we assume the capability of

transmitting a signal only in half-sphere4. With respect to the

scenario depicted in Figure 3, the receiver’s sector is always

facing to the yz-plane with x = 0, whereas the transmitter if

facing to the yz-plane with x = 20.

Due to this sectorization, the effective number of rays is

smaller than that one generated by the ray-tracing simulator.

For instance, in Figures 3(a) and 3(b), the dashed lines indicate

the removed rays. Finally, notice that in NLOS conditions the

number of paths is two (effect of diffraction and blockage),

whereas in LOS is four (effect of the multipath propagation).

The objectives of our study are: i) evaluate the performance

of the proposed A-LASSO method as a function of the Signal-

to-Noise Ratio (SNR) using different bandwidth Bp and URA

structures; ii) investigate the impact of beam switching by

considering a full and half rotation cycle; iii) compare the

performance between LOS and NLOS conditions and, iv)
compare the A-LASSO technique with a Least Squares (LS)

estimator5 (legacy method).

4This level of directionality can be obtained with a back-reflector
5ĤLS =(WHAH)†[y1X

−1

11
, · · · ,yNX−1

NN
], where †is the pseudoinverse.
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Figure 4. Performance as a function of the SNR and for different channel
bandwidth

The performance metric is the average normalized squared

error (in dB) given by

β = 10 log

(

1

T

T
∑

t=1

{

‖vec(H(t))−ĥ
(t)‖2

2

‖vec(H(t))‖2
2

}

)

, (13)

where T is the number of simulations, ĥ,Ψ̂ẑ and Ψ̂=D(Ξ̂).
Figure 4 shows the estimation error as function of the SNR

for both LOS and NLOS scenarios as well as for different

values of Bp (expressed as a percentage of B) and with two

measurement settings, full cycle (Figure 4(a)) and half cycle

(Figure 4(b)). The results are obtained with a receiving antenna

URA with Mz = 8, thus M = 64. Generally, it is shown that

a lower estimation error can be achieved with the A-LASSO

algorithm. What is more, the gap between the A-LASSO and

LS is more prominent in the low SNR régime, since the

A-LASSO can remove noise components by optimizing the

dictionary.

2016 24th European Signal Processing Conference (EUSIPCO)

1993



2 3 4 5 6 7 8

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Performance of the channel estimation algorithm
TXant = 1, Bp = 5%B, B = 200MHz

Number of antenna elements in the z-axis, Mz

A
ve
ra
ge

n
or
m
al
iz
ed

sq
u
ar
e
er
ro
r,
β
[d
B
]

A-LASSO, LOS, SNR=0
A-LASSO, LOS, SNR=15
A-LASSO, LOS, SNR=30
A-LASSO, NLOS, SNR=0
A-LASSO, NLOS, SNR=15
A-LASSO, NLOS, SNR=30
LS, LOS/NLOS

SNR=0

SNR=15

SNR=30

(a) Full rotation cycle

2 3 4 5 6 7 8

-40

-35

-30

-25

-20

-15

-10

-5

0

Number of antenna elements in the z-axis, Mz

A
ve
ra
ge

n
or
m
al
iz
ed

sq
u
ar
e
er
ro
r,
β
[d
B
]

A-LASSO, LOS, SNR=0
A-LASSO, LOS, SNR=15
A-LASSO, LOS, SNR=30
A-LASSO, NLOS, SNR=0
A-LASSO, NLOS, SNR=15
A-LASSO, NLOS, SNR=30
LS, LOS/NLOS

SNR=0

SNR=15

SNR=30

(b) Half rotation cycle

Figure 5. Performance as a function of the antenna structure.

By comparing the results between LOS and NLOS channel

conditions, we notice that the estimation error is similar,

although slightly worse in LOS case. This is a consequence

of the simulation setting, in which the LOS link has a higher

number of paths.

Finally, by comparing Figures 4(a) and 4(b), the error is

larger with the half rotation cycle. This is a typical effect in

compressive sensing and it indicates that the number of beam

switching is not enough to yield Φ̄HΦ̄ ≈ I.

Figure 5 shows the performance of the A-LASSO as a

function of the antenna structure. We vary Mz from two

to eight, thus gradually allowing higher resolution for the

elevation. Likewise the previous set of results, the estimation

error is computed with different SNR as well as for LOS and

NLOS channel conditions and with a complete and a reduced

measurement set. The pilot bandwidth Bp = 5%B. Unlike

the LS, the estimation error achieved with the A-LASSO

algorithm improves with the increase of Mz . In fact, the

A-LASSO algorithm can exploit a higher elevation resolution

to separate paths as well as to remove noise. The results

in Figure 5(b) show, however, a critical value of Mz , be-

fore which the A-LASSO leads to a larger estimation error

compared to the LS. This is related to the fact that good

sparsifying dictionary can not be found, and subsequently the

sparse channel representation is not sufficiently sparse.

V. CONCLUSIONS

We considered the problem of channel estimation for a 3D

MIMO-OFDM system with hybrid analog-digital transceiver

architecture. We leveraged channel sparsity, especially en-

hanced with 3D MIMO as well as with the usage of high

carrier frequencies, into the formulation of a ℓ1-based estima-

tion algorithm, the A-LASSO. Also, we proposed an efficient

beam switching strategy to circumvent the limitations caused

by the limited number of digital paths. It was found that

the performance of the A-LASSO depends on the number

of rays forming the channel. With limited numbers of beam

sweeps, the estimation error can increase when the antenna is

not sufficiently large. Future work will focus on the study of

multiple transmit antennas and precoding design.
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