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ABSTRACT
A crucial first step for signal processing decentralized sen-
sor networks with node-specific interests is to agree upon
a common unique labeling of all observed sources in the
network. The knowledge “who observes what” is required,
e.g. in node-specific audio or video signal enhancement to
form node clusters of common interest. Recently proposed
in-network distributed adaptive classification and labeling
algorithms assume knowledge on the number of objects
(clusters), which is not necessarily available in real-world
applications. Thus, we consider the problem of estimating
the number of data-clusters in the distributed adaptive net-
work set-up. We propose two distributed adaptive cluster
enumeration methods. They combine the diffusion principle,
where the nodes share information within their local neigh-
borhood only (without fusion center), with the X-means and
the PG-means cluster enumeration. Performance is evalu-
ated via simulations and the applicability of the methods is
illustrated using a distributed camera network where moving
objects appear and disappear from the Line-of-Sight (LOS)
and the number of clusters becomes time-varying.

Index Terms— Distributed Cluster Enumeration; Dis-
tributed Classification; Object Labeling; Camera Network;
X-means; PG-means; MDMT; Diffusion;

1. INTRODUCTION

Distributed adaptive signal processing and communication
networking are advancing rapidly. This has led to new
paradigms for signal and parameter estimation. One such
paradigm is where Multiple Devices cooperate in Multiple
Tasks (MDMT). Herein, a network of devices with node-
specific interests adaptively optimizes its behavior, e.g., to
jointly solve a decentralized signal or parameter estimation
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problem [1, 2]. This is different from the classical wireless
sensor network setup, in which multiple devices perform
one single joint task [1]. A crucial first step that has been
recently addressed in the MDMT paradigm is the common
unique labeling of all observed sources in the network. For
instance, a node-specific audio signal enhancement requires
a common unique labeling of all relevant speech sources
that are observed by the network [3]. Also, in an image en-
hancement task, it is of practical importance to answer the
question: Who observes what? [4]. This question can be
addressed via in-network adaptive classification and label-
ing algorithms where a minimum amount of information is
exchanged among single-hop neighbors. Various methods
have been proposed that deal with distributed data clustering
and classification, e.g., [3–5]. The above methods assume
knowledge of the number of objects (clusters), which is not
necessarily available in real-world applications. Thus, this
paper considers the problem of estimating the number of
data-clusters in a distributed adaptive network.

For the single node case, determining the number of clus-
ters has attracted considerable interest in the last decade, e.g.,
[6–9]. In this paper, we propose two distributed adaptive
cluster enumeration methods based on the diffusion princi-
ple in [10]. The first one, the diffusion based non-splitting
X-means (DX-means), estimates the number of clusters via
an improved non-splitting X-means [6–8]. While the sec-
ond proposed method, the diffusion based PG-means (DPG-
means), is based on the PG-means [9]. The proposed algo-
rithms adaptively estimate the number of clusters sequentially
using streaming data. This is of high practical value, e.g., in
a distributed camera set-up where moving objects appear and
disappear from the LOS and the number of clusters becomes
time-varying.

The paper is organized as follows. Section 2 formulates
the distributed cluster enumeration problem and Section 3
presents the proposed methods in detail. A numerical evalu-
ation using simulated data and a multi-camera video example
is provided in Section 4. Section 5 concludes the paper.
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2. PROBLEM FORMULATION

Consider a wireless camera network as the one depicted in
Fig. 1, where spatially distributed cameras (nodes) monitor
continuously a common scene from different viewpoints. Let
J be the number of nodes in the network and let xj ∈ Rd

denote the d-dimensional feature vector extracted at the jth

node with class label Cj ∈ {1, . . . ,K}. The set of nodes that
communicate with node j ∈ 1, ..., J are denoted by neighbor-
hood Bj . In the camera network of Fig. 1, nodes j ∈ {5, 6}
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Fig. 1. A wireless camera network continuously observing a
scene. The top image shows a camera network with J = 9
nodes distributed in space and observing the scene from dif-
ferent viewpoints. The bottom left and right images show
frames captured at the same time by camera 1 and camera 9,
respectively.

are moving and the remaining nodes are stationary. Due to
the different viewpoints, even at the same time instant, the
number of objects observed by different cameras differs. Our
research goal is to adaptively estimate the network-wide num-
ber of clusters (objects), given that this number K is in some
range Kmin ≤ K ≤ Kmax. We propose distributed adaptive
cluster enumeration methods that are based on the diffusion
principle. In this way, we obtain an estimate of K, whereby
each node j utilizes the information it received from its neigh-
borhood Bj . This allows for a global agreement regarding the
number of objects in the scene, using only local interactions.

3. PROPOSED DIFFUSION BASED CLUSTER
ENUMERATION METHODOLOGY

Two methods based on the diffusion principle [10] are pro-
posed, see Fig. 2. Having observed Nt feature vectors xj(n),
each node j forms a matrix Sj(n). Optionally, xj(n) is
exchanged within Bj before adapting, i.e., determining the
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Fig. 2. An overview of the distributed diffusion based cluster
enumeration methods.

cluster number based on Sj(n) which contains all available
xi(n), i ∈ Bj . If the exchange of xi(n), i ∈ Bj is left out,
Sj(n) = xj(n) and the methods proceed analogously. The
proposed cluster enumeration algorithms are based on infor-
mation criteria (DX-means, Sec. 3.1) or hypothesis testing
(DPG-means, Sec. 3.2). The intermediate cluster number
estimate k̂0j is improved upon by including neighboring es-
timates k̂0i , i ∈ Bj which are combined to form the final
decision. As data streams sequentially, the steps shown in
Fig. 2 are repeated to provide an online in-network esti-
mate. In this paper, the combine step at node j is chosen as
median{k̂0i }, i ∈ Bj . Table 1 summarizes the algorithm in
pseudo-code. The next sections provide details on the deci-
sion making at the jth node for the two proposed methods.

3.1. The DX-means Algorithm

In the DX-means algorithm, each node j calculates the
Bayesian Information Criterion (BIC) [6, 11] score of the
alternative modelsMjK as follows:

BICj(MjK) = l̂jK(Sj(n))−
γjK
2

logNj , (1)

where l̂jK is the log-likelihood of the feature vectors based on
the modelMjK , and γjK is the number of parameters in the
model. The alternative models MjK correspond to solutions
with different values of K. Under the spherical Gaussian as-
sumption, the log-likelihood of Sj(n) is given as:

l̂jK(Sj(n)) = log

Nj∏
n=1

P (Sj(n)) =

Nj∑
n=1

logP (Sj(n))

=
K∑

k=1

(
njk log

njk
Nj
− dnjk

2
log(2πσ̂2

jk)

)

−
K∑

k=1

 1

2σ̂2
jk

∑
Sj(n)∈Cjk

‖Sj(n)− ψ̂jk‖2
 ,

(2)
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Distributed diffusion based cluster
enumeration methods

1. for m = 1, 2, . . . do
2. for all j = 1, ..., J do
3. collect Nt feature vectors and store in

Sj(n), n = 1, . . . , Nj , where Nj = mNt

4. end for
5. for all j = 1, ..., J do
6. exchange xj(n) within Bj
7. end for
8. for all j = 1, ..., J do
9. adapt model order using DX-means as in

Sec. 3.1 or DPG-means as in Sec. 3.2
10. end for
11. for all j = 1, ..., J do
12. exchange k̂0j within Bj
13. end for
14. for all j = 1, ..., J do
15. combine k̂0i , i ∈ Bj by taking the median
16. end for
17. end for

Table 1. Summary of the distributed diffusion based cluster
enumeration methods.

where ψ̂jk is the cluster centroid, σ̂2
jk is the cluster variance

maximum-likelihood (ML) estimate, and njk is the number
of feature vectors that belong to cluster Cjk.

After calculating the BIC score of the alternative models
MjK , each node j estimates the intermediate cluster num-
ber k̂0j using the knee point detection method (KP) as in [8].
Further possibilities to find k̂0j are the Successive Differ-
ence (SD) and the global maximum of the BIC curve. The
successive difference of three consecutive points is calcu-
lated as SDj(MjK) = BICj(Mj(K−1)) − 2BICj(MjK) +
BICj(Mj(K+1)).

3.2. The DPG-means Algorithm

DPG-means obtains the parameters of model MjK using
the EM algorithm. For a given model MjK , we compute
the parameter ML estimates and assume that Sj(n) ∼
N (ψ̂jk, Σ̂jk). DPG-means projects Sj(n) and MjK to
R1×1 using a unit length random projection vector P . Now
sPj = PTSj ∼ N (ψ̂Pjk, (σ̂

P
jk)

2), where ψ̂Pjk = PT ψ̂jk and
(σ̂Pjk)

2 = PT Σ̂jkP .
After projection, a Kolmogorov-Smirnov (KS) test is used
to check if the projected model fits the projected data. The
critical value zjk is calculated via

zjk = max
sP
j (n)
|F(sPj (n))− G(sPj (n))|, (3)

where F(sPj (n)) is the Gaussian cumulative distribution
function (cdf) formed with ψ̂Pjk and (σ̂Pjk)

2, whereas G(sPj (n))
is the empirical cdf of sPj (n). Different methods have been
proposed to compute the threshold to which zjk is compared
to in order to accept Gaussianity, and therewith the model
under test [12, 13]. Best performance was obtained by using
Monte-Carlo techniques where data has been generated from
N (ψ̂Pjk, (σ̂

P
jk)

2) to determine the threshold as in [12, 13].

4. RESULTS

4.1. Performance Measures

In this section, performance comparison of the DX-means and
DPG-means algorithms is provided for two simulated cluster-
ing examples and one multi-camera video data set. As a per-
formance measure, we calculate the average estimated cluster
number (k̂ave) and the average estimation rate (AER) as fol-
lows

k̂ave =
1

J ×mc

J∑
j=1

mc∑
i=1

k̂j(i) (4)

AER =
1

J ×mc

J∑
j=1

mc∑
i=1

(k̂j(i) == true clusters). (5)

Here, mc indicates the number of Monte-Carlo experi-
ments. The convergence rate (Rc) of the proposed algorithms
in terms of the number of feature vectors per node is com-
puted asRc = AER(m+1)−AER(m) < ε, where ε = 0.05
for the simulated data sets and ε = 0.1 for the multi-camera
video example.

4.2. Simulation Setup

All simulation results are an average of 1000 Monte-Carlo
experiments and for each experiment a different random net-
work topology is considered. We compare our results with a
distributed non-cooperative and centralized implementation.
In the centralized network, all nodes send their intermediate
cluster number estimate k̂0j to the fusion center and the fusion
center computes k̂j by taking the median of k̂0j .
In the first simulated data set (Data-1), we have assumed
that xj(n) ∼ N (ψk,Σk) with ψ1 = [−1, 0]T , ψ2 =
[4, 0]T , ψ3 = [0, 5]T , ψ4 = [9, 4]T , ψ5 = [3, 9]T , Σ1 =
[0.2, 0.4]T I2, Σ2 = [0.6, 0.6]T I2, Σ3 = [0.4, 0.2]T I2,
Σ4 = [0.2, 0.2]T I2, and Σ5 = [0.3, 0.5]T I2. Id denotes the
d-dimensional identity matrix. For the second simulated data
set (Data-2), xj(n) ∼ N (ψk,Σjk), where Σjk vary slightly
across the network: ψ1 = [−1, 0, 7]T , ψ2 = [3, 0, 8]T , ψ3 =
[0, 5, 1]T , ψ4 = [9, 4, 4]T , ψ5 = [3, 9, 5]T , ψ6 = [5, 5, 1.5]T ,
Σj1 = α[0.2, 0.4, 0.2]T I3, Σj2 = α[0.6, 0.3, 0.5]T I3,
Σj3 = α[0.4, 0.2, 0.1]T I3, Σj4 = α[0.3, 0.3, 0.3]T I3,
Σj5 = α[0.3, 0.5, 0.3]T I3, and Σj6 = α[0.4, 0.4, 0.4]T I3,
where α = 1 for 30% of the nodes, α = 2 for 40% of the
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Table 2. The time required to reach convergence in a dis-
tributed cooperative network set-up.

DX-means DPG-means
KP SD max(BIC)

Data-1 10 90 40 10
Data-2 40 80 60 50

Multi-camera
video 20 30 10 30

nodes, and α = 3 for the remaining nodes. For the simulated
data sets, we consider a scenario with J = 10 nodes, a neigh-
borhood size of Bj = 4 and 50 feature vectors per cluster
in each case, where each node j collects Nt = 10 feature
vectors at a time.
For the multi-camera video example, we used J = 7 station-
ary cameras and Bj = 6. A video of 95 frames was captured
by the cameras to test the performance of the proposed meth-
ods. The multi-camera video example is challenging in the
sense that the video has very low resolution, the cameras
monitor the moving objects (cars) from different angles, and
there are few feature vectors. We used a Gaussian Mixture
model (GMM) foreground detector to separate moving ob-
jects from the background and the feature vectors used are a
concatenation of SURF [14] and color features. For the color
histogram, the detected foreground is subdivided into three
concentric rings and a 10-bin histogram per color channel
is computed for every region in a cumulative manner (i.e.,
adding the previous region). The concatenation of these three
histograms gives us the descriptor of each color channel,
and concatenation of the three color channels result in a 90-
dimensional color feature. Thus, the feature vectors used are
211-dimensional.

4.3. Simulation Results

The time taken for convergence and the performance of the
methods at convergence is provided in Tables 2 and 3, respec-
tively. For Data-1, both DX-means and DPG-means are able
to converge very fast and attain similar average estimation rate
at convergence. For Data-2, the DX-means outperforms the
DPG-means in both the convergence speed and average esti-
mation rate. For the DX-means algorithm, knee point detec-
tion performs better than successive difference and the global
maximum of the BIC curve. Thus, we have used the knee
point detection method of the DX-means algorithm to gener-
ate the plots.

Fig. 3 displays the average estimated clusters as a func-
tion of the number of feature vectors per node for Data-1.
In this experiment, for every n = 5m × Nt, feature vectors
from a new cluster appear and the number of clusters in-
crease by one. The error bars show the estimation errors and
are defined as twice the standard deviation. In general, the

Table 3. AER (in %) at convergence in a distributed coopera-
tive network set-up.

DX-means DPG-means
KP SD max(BIC)

Data-1 100 87.7 96 99.3
Data-2 94.3 84.6 96.3 87.1

Multi-camera
video 100 86.5 0 58

distributed cooperative network performs much better than
the distributed non-cooperative network and the result of the
cooperative implementation approaches the centralized one
as the number of feature vectors per node increases.
The average estimated clusters as a function of the number of
feature vectors per node for Data-2 is shown in Fig. 4. Here,
feature vectors from all clusters are available from the begin-
ning. This data set contains cluster overlap and for a small
number of feature vectors per node the number of feature
vectors per cluster becomes very small. For this data set, DX-
means converges faster than DPG-means. In the multi-view
camera network, only DX-means with knee point detection is
able to provide the correct cluster number. DX-means using
the global maximum of the BIC curve completely breaks
down and goes for Kmax. DPG-means is able to estimate
the true number of clusters in the beginning but after that it
consistently overestimates by one. Presumably this behavior
is due to remaining background in the foreground of the seg-
mented image which is treated as a separate class.

5. CONCLUSION

We proposed two in-network distributed adaptive cluster enu-
meration algorithms. A numerical evaluation using simulated
data and a multi-camera video example have shown that the
proposed diffusion based algorithms approach the perfor-
mance of the centralized implementation without requiring a
fusion center.
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(a) Cooperative network.
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(b) Non-cooperative network.
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(c) Centralized network.

Fig. 3. Average estimated clusters as a function of the number
of feature vectors per node for Data-1. a) displays the re-
sults achieved in a distributed cooperative implementation, b)
shows the results of a distributed non-cooperative implemen-
tation, and c) shows the results of a centralized implementa-
tion with a fusion center.
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Fig. 4. Average estimated clusters as a function of the num-
ber of feature vectors per node using a distributed cooperative
implementation for Data-2.
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