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ABSTRACT

Due to the resolution limitation of the hyperspectral imag-
ing sensors, some targets only take one or two pixels in the
hyperspectral image (HSI). These targets are called small
targets. When HSI is impaired and has to be denoised, small
targets might be suppressed in the denoising process, which
can degrade the detection performance. In this paper, we
propose a method to improve the small target detection per-
formance of HSI which is damaged by nonwhite thermal
noise. One recently proposed nonwhite noise reduction al-
gorithm prewhitening-multiway-Wiener-Filter (PMWF) and
a usually used spatial-domain wavelet packet transform with
SureShrinkage (SWPT-SURE) denoising approach are com-
pared with the algorithm proposed in this paper. Finally, a
real-world HYDICE HSI is employed to investigate the noise
whitening capability and the improvement of small target
detection performance.

Index Terms— Hyperspectral image, Target detection,
nonwhite noise, multiway filtering, wavelet packet transform.

1. INTRODUCTION

A hyperspectral image (HSI) contains not only spatial infor-
mation of but also spectral signatures of objects, therefore it is
a suitable tool for detecting targets on the ground. However,
owning to the limited spatial resolution of the hyperspectral
imaging sensor, some objects on the ground only have a spa-
tial extent in the order of the sensor geometrical resolution [1].
These objects are called small targets in this paper. It is a chal-
lenging problem to detect the small targets especially when
noise in HSI is considered. In fact, HSI is always impaired
by noise from radiation, atmospheric scattering and thermal
noise in the acquiring instrument. Reducing noise and empha-
sizing target contribution is a common approach to solve the
target detection problem in noise environment. For HSI, there
are two main noise sources: the signal-independent thermal
noise, and the signal-dependent photonic noise. In this paper,
we mainly focus on reducing signal-independent noise.

The classical denoising methods rearrange HSI into a
matrix whose columns contain the spectral signatures of all
the pixels and the signal subspace is estimated by methods

based on the analysis of second-order-statistics (SOS), such
as PCA. Since these methods need to know the rank of the
signal subspace, some rank estimation algorithms relying
on SOS have been developed, such as the classical Akaike
information criterion(AIC) and the recent noise whitened
Harsanyi-Frarrand-Chang (NWHFC) algorithm [2]. How-
ever, the main problem of the SOS-based-techniques is their
weakness in preserving small targets [1]. Concerning the
small-target-preservation problem, Kuybeda has proposed
the Maximum Orthogonal Complement Analysis algorithm
(MOCA) and Acito has presented the Robust Signal Subspace
Estimation algorithm (RSSE) [3]. These two methods assume
that the small targets have a high residual energy on the sub-
space that is orthogonal to the background one. However, this
assumption is not always fulfilled. The spatial information
preserves a spectrum with a particular spatial characteristics.
To jointly use spatial and spectral information, a multiway
Wiener filter (MWF) [4] is proposed to denoise HSI as a
whole entity based on TUCKER3 decomposition. In MWF,
the filter in each mode is computed as a function of filters in
the other modes, which reflects its capability in jointly utiliz-
ing information in each mode of HSI. Since MWF is proposed
for white noise, a prewhitening MWF (PMWF) method [5]
is proposed to make it applicable under the more generalized
signal-independent nonwhite thermal noise model.

Though MWF performs well in denoising HSI, since it
treats HSI as a whole entity, the large and small targets cannot
be separated, therefore the small ones might be suppressed [6]
. Distinguishing from MWF, wavelet transform (WT) can
separate small targets and large targets into different coeffi-
cient sets, therefore it is possible to treat these two types of
targets with different parameters to better preserve the small
ones. SureShrink is a commonly used denoising method in
the wavelet domain. Recently, a hybrid spatial-spectral noise-
reduction (HSSNR) algorithm was proposed to reduce noise
in spectral derivative domain and a combination of PCA and
wavelet shrinkage was proposed to reduce noise in the last
several PCA-output-channels. However, these methods only
consider white noise, which does not conform to the noise in
HSI [7].

In this paper, we investigate the jointly component fil-
tering algorithm(MWPT-MWF), to make it applicable in the
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signal-independent nonwhite noise environment and show
its capability of preserving small targets in the denoising
process. For the nonwhite noise environment, we present a
component-based prewhitening method, which can whiten
noise in each component adaptively. Concerning the capa-
bility of preserving small target, the proposed method will
be compared with PMWF and spatial-domain wavelet packet
transform with SureShrink(SWPT-SURE) [8] in the perfor-
mance of target detection for a real-world data.

The remainder of the paper is as follows: Section 2 intro-
duces some basic knowledge about multilinear algebra. Sec-
tion 3 introduces the signal model. Section 4 shows the pro-
posed method in reducing nonwhite noise. Section 5 presents
some experimental results and finally section 6 concludes this
paper.

2. MULTILINEAR ALGEBRA TOOLS

2.1. n-mode unfolding

Xn ∈ RIn×Mn denotes the n-mode unfolding matrix [5] of a
tensor XThe columns of Xn are the In-dimensional vectors
obtained from X by varying index in while keeping the other
indices fixed. Here, we define the n-mode rank Kn as the
n-mode unfolding matrix rank,that is Kn = rank(Xn).

2.2. n-mode product

The n-mode product [5] is defined as the product between a
data tensor X ∈ RI1×I2×...IN and a matrix B ∈ RJ×In in
mode n. It is denoted by C = X ×n B.

3. SIGNAL MODEL

A noisy multidimensional data is modeled as a tensor R ∈
RI1×I2×I3 resulting from a multidimensional signal X ∈
RI1×I2×I3 impaired by an additive noise N ∈ RI1×I2×I3 .
The tensorR can be expressed as:

R = X +N (1)

In this paper, only thermal noise is considered, which means
that noise is independent from the signal and the noise in each
band is zero mean Gaussian white noise while noise variance
changes from band to band,

4. COMPONENT-BASED NONWHITE NOISE
REDUCTION

4.1. SWPT for separating targets

As the large and small targets are different in the spatial size,
SWPT is applied to separate different target sizes. For the
convenience in expressing 3D HSI, SWPT is written in tensor
form as

CR = R×1 W1 ×2 W2 (2)

and the corresponding reconstruction:

R = CR ×1 W
T
1 ×2 W

T
2 (3)

where Wn ∈ RIn×In , n = 1, 2, 3 indicate the wavelet
packet transform matrices. The transform level vector is
l = [l1, l2]

T , where ln ≥ 0 denotes the wavelet packet trans-
form level in mode n. Being named a component of scale
m = [m1,m2] in this paper, the coefficient tensor CRl,m can
be extracted by:

CRl,m = CR ×1 Em1
×2 Em2

(4)

and the corresponding inverse process is:

CR =
∑
m1

∑
m2

CRl,m ×1 E
T
m1
×2 E

T
m2

(5)

where the extraction operator Emn is defined as:

Emn
= [01, I In

2ln
× In

2ln

,02] ∈ RIn/2
ln×In (6)

where 01 is a zero matrix with size In
2ln
× mnIn

2ln
and 02 is a

zero matrix with size In
2ln
× (2ln−1−m)In

2ln
.

4.2. Nonwhite noise reduction

The signal coefficient tensor CXl,m [8]can be estimated by fil-
tering CRl,m with MWF. However, MWF is proposed for the
white noise situation [9], therefore CRl,m should be whitened
before being filtered by MWF. In [8], noise in R is whitened
before MWPT. After MWPT the noise in the component CRl,m
is nonwhite For this reason, we propose a component based
noise prewhitening method

CNl,m = N ×1 W1 ×2 W2 ×1 Em1
×2 Em2

(7)

Unfolding CNl,m in mode-3, we can obtain:

CNl,m = N3[(Em1W1)
T ⊗ (Em2W2)

T ] (8)

where N3 is the mode-3 unfolding form of N . Furthermore,
the noise covariance matrix of CNl,m can be obtained:

E
[
CNl,m(CNl,m)T

]
= E

[
N3ξN3

T
]

(9)

where

ξ = [(Em1
W1)

T ⊗ (Em2
W2)

T ][(Em1
W1)⊗ (Em2

W2)]

= [(Em1
W1)

T (Em1
W1)]⊗ [(Em2

W2)
T (Em2

W2)]

If the support length of wavelet is less than In/2ln , we can
obtain that (Emn

Wn)
T (Emn

Wn) = IIn/2ln×In/2ln . As a
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(a) Ground-truth map

(b) Mask

Fig. 1. Real-world data.

result, ξ = II1×I1 ⊗ II2×I2 = I(I1I2)×(I1I2). By substituting
ξ into (9), we can obtain:

E
[
CNl,m(CNl,m)T

]
= E

[
N3N3

T
]

(10)

As described in [5], E
[
N3N3

T
]

can be estimated by the
multiple regression theory. Therefore, equation (10) implies
that E

[
CNl,m(CNl,m)T

]
can be estimated by that theory as

well:

E
[
CNl,m(CNl,m)T

]
= diag{σ2

m,1, . . . , σ
2
m,I3} (11)

where σm,i3 = ρ2m,i3
(1− τ2mi3

) and ρ2m,i3
is the i3-th diago-

nal element of the sample covariance matrix [5] of CNl,m and
τ2m,i3

is the multiple correlation coefficient of band i3 on the
other I3 − 1 bands. Accordingly, the noise whitening matrix
of CRl,m is:

G = diag{σ−1m,1, . . . , σ
−1
m,I3
} (12)

By considering the prewhitening process, CXl,m can be esti-
mated by:

ĈXl,m =CRl,m ×3 G×1 H1,m ×2 H2,m ×3 H3,m

= CRl,m ×1 H1,m ×2 H2,m ×3 (GH3,m)
(13)

where Hn,m is the mode-n MWF filter.
Henceforth, for the sake of compactness, the proposed al-

gorithm is called SWPT-CPMWF.

5. EXPERIMENTAL RESULTS

In this section, we use a real-world high spatial resolution data
acquired by HYperspectral Digital Imagery Collection Ex-
periment (HYDICE). The HYDICE image contains 65 rows,

Fig. 2. Spectral signatures of the 6 targets

Fig. 3. Mean noise variance in each band (SNR=17dB)

100 columns and 160 spectral bands, and is modeled as a
65 × 100 × 160 tensor in this paper. Six targets of interest
are selected in the image as shown in the ground-truth map in
Fig. 1(a) and the corresponding mask is shown in Fig. 1(b).
The 6 targets are chosen because they have different spectral
signatures and sizes, so that the detection performance on dif-
ferent target sizes can be evaluated.

Signal-independent nonwhite noise is added into HSI ac-
cording to the model in (1), with the noise variance in each
band shown in Fig. 3. Concerning the simulation parameters,
we considered SNR ranged from 15 to 25 dB (with a step of
2 dB) to reproduce different detection scenarios. Moreover,
wavelet db3 is selected to do SWPT with transform levels
[l1, l2] = [1, 1].

5.1. Noise-whitening performance evaluation and com-
parison

The relationship given in (10) is important in this paper be-
cause it gives a way to estimate the noise covariance matrix of
each component. To validate this relationship, Fig. 4 shows
the noise-variance-estimate curves of every component and
HSI dataset. As is evident, there are only small variations
among these curves, which implies that it is efficient of esti-
mating noise variance in each component by multiple regres-
sion theory. The small variations among the curves reflect
that the noise variance estimate calculated by using data in
the component can adapt better to the component itself than
that calculated by using HSI.

To emphasize the whitening result explicitly, Fig. 5
presents the normal probability plot for the noise not whitened
and the corresponding whitened noise in each component. As
is shown in Fig. 5(a), the values of noise not whitened do
not follow a straight line, which means that the noise not
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whitened cannot be considered as coming from a normally
distributed dataset. Hence the prewhitening operation is nec-
essary to obtain white noise. The first way coming into our
view is to whiten R before SWPT, also named HSI-based
prewhitening method. Fig. 5(b) presents the noise values in
each component, which is obtained by HSI-based prewhiten-
ing method. It is evident that only the noise in component [1
1], the finest scale coefficient set, can be considered as nor-
mally distributed, but noise in the other components does not
follow normal distribution. Fig. 5(b) implies that HSI-based
prewhitening method is not a suitable solution for whiten-
ing noise in each component. As a result, the component-
based prewhitening method is designed in this paper. As
is presented in Fig. 5(c), the noise in each component is
approximately normally distributed after being whitened by
the component-based prewhitening method. The comparison
in Fig. 5 implies that the proposed algorithm is efficient in
whitening noise in the component.

Fig. 4. Estimate of noise variance in each band, SNR=17dB

5.2. Target-detection performance evaluation and com-
parison

Spectral Angle Mapper (SAM) detector is used in the experi-
ments to detect targets in the image. As SAM does not require
the characterization of background, it can avoid inaccuracy of
the comparison result caused by the noise covariance matrix
estimation error. The SAM detector can be expressed as:

TSAM(x) =
sTx

(sT s)1/2(xTx)1/2
(14)

where s is the reference spectrum, and x is the pixel spectrum.
To assess the performances of detection, the probability of
detection (Pd) is defined as:

Pd =

∑ns

i Nrd
i∑ns

i Ni
(15)

and the probability of false alarm (Pfa) is defined as:

Pfa =

∑ns

i Nfd
i∑ns

i (I1 × I2 −Ni)
(16)

(a)

(b)

(c)

Fig. 5. Normal probability plot for noise in each com-
ponent (a) noise not whitened and (b) noise whitened by
HSI-based method (c) noise whitened by component-based
method, SNR=17dB.
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where ns is the number of spectral signatures, Ni the number
of pixels with spectral signature i, Nrd

i the number of rightly
detected pixels, and Nfd

i the number of falsely detected pix-
els.

Apart from the detection performance for each target,
most of the time, we consider more about the detection per-
formance for all the targets in HSI. In the scenario where
small and large targets coexist, an outstanding denoising
method should preserve both of them to improve the target
detection performance. Fig. 6 supplies Pd versus SNR curves
of all the targets after denoising by different methods. These
results are strongly in favor of the proposed method SWPT-
CPMWF. The excellent performance of SWPT-CPMWF is
due to its capability of preserving both small targets and large
ones while reducing noise from HSI. PMWF cannot preserve
small target with weak power, therefore its Pd is less than
SWPT-CPMWF. SWPT-SURE [8] suppress the small target
in the denoising process due to its global SureShrink, which
degrades its performance. Though the avoiding denoising
raw data can preserve small target well, the noise in the data
prevents from detection the large target with small power,
therefore Pd in this case is less than the ones after denoising
by the three methods.

Fig. 6. Pd versus SNR curves of all the targets with Pfa=10−4

after denoising by SWPT − SURE, PMWF and SWPT −
CPMWF in various noise environment

6. CONCLUSION

In this paper we have proposed an automatic denoising al-
gorithm SWPT-CPMWF which can be utilized directly in
the signal-independent nonwhite noise environment. To pro-
cess the nonwhite noise, SWPT-CPMWF takes a component-
based noise-whitening method, which makes it data-adopting.
Moreover, not like most denoising algorithms that cannot pre-
serve small targets, the proposed SWPT-CPMWF performs
well in preserving small targets even when targets of different
sizes coexist in the same HSI. The capability of preserving
small target makes SWPT-CPMWF a suitable tool for im-
proving target detection efficiency in the noise environment.
A real-world HSI data HYDICE is used in the experiments
to test the performance of the proposed SWPT-CPMWF. In
the noise-whitening experiment, we have compared the HSI-

based prewhitening method and the proposed component-
based prewhitening method, and the result is strongly in favor
of the latter one. Furthermore, different denoising methods
are also compared in the aspect of improving target detection
performance. From the detection result, it is evident that the
proposed SWPT-CPMWF outperforms the other denoising
methods in detecting both large and small targets.
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