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ABSTRACT

Direction of arrival estimation using a spherical microphone

array is an important and growing research area. One promis-

ing algorithm is the recently proposed Subspace Pseudo-

Intensity Vector method. In this contribution the Subspace

Pseudo-Intensity Vector method is combined with a state-of-

the-art method for robustly estimating the centres of mass in a

2D histogram based on matching pursuits. The performance

of the improved Subspace Pseudo-Intensity Vector method is

evaluated in the context of localising multiple moving sources

where it is shown to outperform competing methods in terms

of clutter rate and the number of missed detections whilst

remaining comparable in terms of localisation accuracy.

Index Terms— direction of arrival estimation, localisa-

tion, tracking, spherical harmonic domain, subspace pseudo-

intensity vectors, PIV

1. BACKGROUND

Spherical microphone arrays have received growing atten-

tion in recent years thanks to their ability to form direction-

independent beam patterns which can be steered anywhere

in 2D (azimuth/inclination) space [1–3]. Furthermore, rep-

resenting a sampled sound field in terms of its spherical

harmonic decomposition allows algorithms to be developed

which are, to a large extent, independent of the specific mi-

crophone positions. This microphone position-independence

makes the Spherical Harmonic Domain (SHD) a natural choice

for signal processing in the context of robot audition, where it

is desirable to integrate a pseudo-spherical microphone array

into the head of a humanoid robot [4].

One of the fundamental problems in microphone array

signal processing is Direction-of-Arrival (DOA) estimation.

For real world applications, and especially in robot audi-

tion, it is desirable to localise1 moving sources. Since lo-

calisation algorithms generally assume that the sources are

static, one must partition the signals due to moving sources

into observation intervals over which the assumption is at
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1We use the terms DOA estimation and localisation interchangeably.

least approximately true. Making the observation intervals

as short as possible reduces the latency and increases the

validity of the static source assumption. However, shorter

observation intervals also increase the variance in the esti-

mated DOAs, increase the probability of missed detections

(where the source is present but localisation does not return a

corresponding DOA) and increase the number of clutter mea-

surements (where a DOA is produced which does not relate

to a true source.) The increase in the variance of the esti-

mated DOAs can be reduced by exploiting the time history of

the DOAs using a tracker [5]. However, high rates of clutter

and missed detections in the DOA estimates generally dete-

riorate tracking performance. It is therefore desirable to use

a DOA estimation algorithm which, given short observation

intervals, minimises the missed detections and clutter, whilst

maintaining acceptable angular error.

A number of algorithms have been formulated which

exploit the SHD [6–15]. The recently proposed Subspace

Pseudo-Intensity Vector (SSPIV) method, [14], operates on

the spatial covariance matrix. As in [8, 10, 11, 13], frequency

smoothing [16] is first used to decorrelate coherent reflec-

tions. Also, similar to [8, 10, 13], Singular Value Decompo-

sition (SVD) is used to partition the covariance matrix into

signal and noise subspaces. However, uniquely, the SSPIV

method operates directly on the signal subspace, whereas

previous approaches have used variants of Multiple Signal

Classification (MUSIC). Under the assumption that a single

source is active in a particular Time-Frequency (TF) region,

the signal subspace is one dimensional and proportional to

the spherical harmonics evaluated in the DOA. Therefore

the Pseudo-Intensity Vector (PIV) method [9] can be applied

to the signal subspace to yield a vector which indicates an

estimated DOA directly.

In this contribution we combine multiple SSPIVs into

a smoothed histogram from which the DOAs can be esti-

mated using the approach of [15]. In contrast to [14] the

SSPIV method is not combined with the Direct-Path Domi-

nance (DPD) test proposed in [13]. This results in vastly more

vectors being available to contribute to the histogram, at the

expense of increased variance in those vectors’ directions.

The updated approach is compared to a selection of compet-

ing algorithms specifically in the context of short observation

intervals, as required for localisation of moving sources.

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 1217



2. PROBLEM FORMULATION

In a reverberant environment with Nd simultaneously active

sources in the far field, the soundfield at the origin is com-

posed of N ≥ Nd planewaves due to the presence of reflected

wavefronts. The planewave density of the soundfield is given

in the Short Time Fourier Transform (STFT)-SHD as

alm(⌫, `) =

N
X

n=1

[Y m
l (Ψn)]

⇤

sn (⌫, `) (1)

where ⌫ and ` denote the discrete frequency and time indices,

respectively, sn (⌫, `) is the complex amplitude of the n-th

planewave, Ψn = (✓n, φn) its direction of arrival and Y m
l is

the spherical harmonic of order l and degree m [3]. Consid-

ering the (L+ 1)
2

spherical harmonics up to l  L, (1) is

expressed in vector notation as

alm(⌫, `) = Y(Ψ)Hs(⌫, `) (2)

where subscript lm on a vector denotes that the elements are

spherical harmonic coefficients, Ψ = [Ψ1 . . . ΨN ]
T

,

Y(Ψ) =

2

6

4

y(Ψ1)
...

y(ΨN )

3

7

5
, (3)

y(Ψn) =
⇥

Y 0
0 (Ψn)Y

−1
1 (Ψn)Y

0
1 (Ψn)Y

1
1 (Ψn) . . . Y

L
L (Ψn)

⇤

,

s(⌫, `) = [s1(⌫, `) . . . sN (⌫, `)]
T

and (·)T and (·)H denote

the transpose and conjugate transpose, respectively. There-

fore, alm(⌫, `) and Y(Ψ) have dimensions (L+ 1)
2 ⇥ 1 and

N ⇥ (L+ 1)
2
, respectively.

To obtain this SHD representation the pressure on the sur-

face of a sphere of radius r is sampled by Q microphones

alm(⌫, `) ⇡ B(k⌫r)
−1Y (Ω)

H
Wp(⌫, `, r) (4)

where p(⌫, `, r) = [p1 . . . pQ]
T

is the pressure at each of the

sample points, W = diag {w1 w2 . . . wQ}, where {wq}Q1
are the weights of the sampling scheme, and Y (Ω) is a Q ⇥
(L + 1)2 matrix defined as in (3) but with the spherical har-

monics evaluated at {Ωq}Q1 . The diagonal matrix, B(k⌫r)
−1,

is a frequency-dependent compensation for the mode strength

of the microphone array, which also depends on whether the

microphones are placed on an open or rigid sphere, and k⌫
is the wavenumber at the ⌫-th frequency. The approximation

in (4) is valid provided (i) k⌫r < L , (ii) Q ≥ (L + 1)2

sample positions are approximately equally distributed over

the sphere and (iii) the sampling weights are chosen appro-

priately [17].

In practice, the microphone signals, x(⌫, `), are dis-

torted by additive sensor noise, v(⌫, `), such that x(⌫, `) =
p(⌫, `, r) + v(⌫, `), where x(⌫, `) and v(⌫, `) have the same

dimensions as p(⌫, `, r). Using (2), the noisy planewave

decomposition is

x̃lm(⌫, `) = Y(Ψ)Hs(⌫, `) + ṽlm(⌫, `) (5)

where

ṽlm(⌫, `) = B(k⌫r)
−1Y (Ω)

H
Wv(⌫, `). (6)

The aim of the present study is to use x̃lm(⌫, `) to estimate the

DOAs, Ψ, of the Nd sources as they move relative to a static

spherical microphone array.

3. PROPOSED METHOD

From (2), the covariance matrix of alm(⌫, `) is [13]

Ralm
= E

{

almaHlm
 

(7)

= YH(Ψ)RsY(Ψ) (8)

where Rs = E
{

ssH
 

is the covariance of the source signals.

Considering also the sensor noise, the observed covariance is

Rx̃lm
= E

{

x̃lmx̃H
lm

 

(9)

= Ralm
+Rṽlm

(10)

which is approximated in the (⌫, `)-th TF-region as [13]

R̂x̃lm
(⌫, `) =

1

J⌫J`

J⌫−1
X

j⌫=0

J`−1
X

j`=0

x̃lm(⌫ + j⌫ , `+ j`)

⇥ x̃H
lm(⌫ + j⌫ , `+ j`). (11)

The averaging over time can be seen as approximating the ex-

pected value while the averaging over frequency implements

frequency smoothing which decorrelates any coherent reflec-

tions [8]. Applying SVD to R̂x̃lm
(⌫, `) leads to

R̂x̃lm
(⌫, `) = UΣUH = [UsUn]



Σs 0
0 Σn

] 

UH
s

UH
n

]

(12)

where U is a unitary matrix, Σ is a diagonal matrix contain-

ing the singular values of Rx̃lm
and Us and Un respectively,

represent the conventional partitioning into signal and noise

subspaces [18].

In the simplest case of a single planewave, the column

vector Us =
⇥

â00 â1(−1) â10 â11 . . . âLL

⇤T
is proportional to

the steering vector for the planewave DOA, y(Ψn). The SSPIV

is defined as [9, 14]

Ĩss =
4⇡

p
4⇡

3
R
n

â⇤00
⇥

Ḋx Ḋy Ḋz

⇤T
o

(13)

where dependence of all variables on (⌫, `) is assumed and

Ḋ$ =
P1

m=−1 Y
m
1 ('$)â1(m) can be interpreted as a beam-

former with dipole directivity pattern aligned with a Carte-

sian axis, $ 2 x, y, z, such that the look directions of the

beamformers are 'x = (⇡/2, 0), 'y = (⇡/2, ⇡/2) and 'z =
(0, 0). Note that in contrast to the intensity-based vectors
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in [9,14] which point in the direction of energy flow, i.e. away

from the source, the vector in (13) is defined to point towards

the DOA. This reversal leads to a more natural discussion of

DOAs and vector directions.

Where multiple sources are present, sparsity in the time-

frequency domain suggests that most SSPIVs will point to-

wards one of the sources, even if some of them are distorted

by an interfering source. Therefore a single histogram formed

from the orientations of the vectors over all frequencies and

falling within the T frame observation interval (` − T, `] is

expected to have peaks corresponding to the desired source

DOAs at time frame `. We estimate the positions of these peaks

using the robust method proposed in [15] which first smooths

the histogram with a 2D Gaussian kernel before sequentially

identifying the largest centres of mass using matched pursuits

with 2D Gaussian dictionary elements.

4. EVALUATION

To evaluate the accuracy of the proposed localisation algo-

rithm in the context of moving sources we considered three

test cases. In the first, 3 static sources of duration 8 sec-

onds were simulated. By setting the observation interval to

be the full signal duration the best case performance was es-

tablished. In the second case the reduction in accuracy as-

sociated with short observation intervals was considered by

performing localisation on the same signals but using obser-

vation intervals of 250 ms. Finally, the effect of the short

term static source assumption was investigated by localising

3 moving sources, again using 250 ms observation intervals.

4.1. Implementation details

Signals were simulated for sources 1.5 m from a 32 chan-

nel rigid spherical microphone array with radius 4.2 cm [1]

centred at (2.0 m, 2.5 m, 1.5 m) in a 5⇥6⇥3 m rectangular

room with reverberation time of 0.5 s. Acoustic Impulse Re-

sponses (AIRs) from each source position to each microphone

were simulated using the image-source method [19] [20]. In

the static source cases the sources were placed at (80◦, 60◦),

(100◦, 180◦) and (80◦, 300◦). For moving sources the trajec-

tories started at the same positions as in the static case but the

azimuth angles were increased linearly with time at a rate of

22.5◦ per second. Anechoic speech from the TIMIT database

was concatenated without gaps to form 8-second segments

and convolved with the AIRs. For the moving sources this was

achieved using overlap-add processing with the source posi-

tions quantised to 5◦ resolution such that the reverberation

was always consistent with the source positions at the time the

signal was emitted. The level of each reverberant source sig-

nal was normalised according to ITU P56 [21] such that the

direct path components of each was equal and Independent

and Identically Distributed (i.i.d.) white Gaussian noise was

added to each microphone signal to obtain 40 dB SNR with

respect to the direct path signals. For each test case the exper-

iment was repeated 30 times using different speech segments

and realisations of noise on each repetition. Each 250 ms ob-

servation interval overlapped the previous interval by 150 ms,

such that DOA were estimated every 100 ms.

The STFT used 8 ms frames with 75% overlap and the SHD

representation was achieved according to (4). The maximum

spherical harmonic order was L = 3 giving a maximum fre-

quency of 3850 Hz to ensure k⌫r < L. The lowest frequency

bin was centred at 500 Hz, which avoids excessive noise am-

plification due to mode strength compensation. R̂x̃lm
(⌫, `)

was obtained with J⌫ = 2 and J` = 13, which corresponds to

averaging over a TF-region of 32 ms and 250 Hz. The SSPIVs

were obtained as in (11), (12) and (13). Histograms were

formed using 2◦ resolution in azimuth and inclination, the

Gaussian kernel used for smoothing had a standard deviation

of 5◦ and that used for the matching pursuits had a standard

deviation of 20◦. As in [15], the number of sources was as-

sumed known a priori such that the first (largest) 3 peaks were

taken as the DOA estimates.

The proposed method was compared to three methods

from the literature. The PIV method [9] produces a set of

vectors for each observation interval. The same smoothed

histogram with matching pursuits method as for the proposed

method was used to obtain the estimated DOAs. The Plane-

Wave Decomposition-Steered Response Power (PWD-SRP)

method used a planewave decomposition beamformer [22]

steered in 180⇥91 directions to produce a power map. The

3 largest peaks were taken as the DOA estimates. The DPD-

MUSIC method was implemented as described in [13]. How-

ever, for consistency the same STFT, J⌫ and J` parameters

were used as for the proposed method. This actually led to an

improvement in performance over those used in [13]. The 3

largest peaks of the spatial spectrum were taken as the DOA

estimates. Since the power map/spatial spectrum of the PWD-

SRP and DPD-MUSIC are not guaranteed to have 3 peaks it is

possible for these methods to return fewer than 3 estimated

DOAs for a given observation interval.

For each observation interval an estimated DOA was as-

signed to a source if it was within 30◦ of the true source direc-

tion. The 4 proposed methods are compared in terms of the

mean angular error in the assigned DOAs. The mean clutter

per interval is the total number of unassigned DOA estimates

divided by the number of intervals. Since there were 3 esti-

mated DOAs per interval the clutter rate is between 0 and 3.

For each source, the miss rate is the proportion of observation

intervals in which none of the estimated DOAs are within 30◦

of the true DOA. The mean miss rate is the average miss rate

across all three sources and is in the range 0-100%.

4.2. Results and discussion

The results of all tests are shown in Table 1. For the static

case where the full 8 second signals were used to form a sin-
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Algorithm Mean angular error [◦] Mean clutter per interval Mean miss rate [%]

Static 8s Static 0.25s Moving 0.25s Static 0.25s Moving 0.25s Static 0.25s Moving 0.25s

SSPIV 2.19 6.86 7.84 0.27 0.24 9 8

PIV 5.71 8.67 9.28 0.61 0.55 21 18

PWD-SRP 4.91 7.84 8.32 0.92 1.00 31 34

DPD-MUSIC 0.82 3.70 5.49 0.78 0.81 27 28

Table 1. Performance metrics for compared methods.

gle set of DOA estimates, all methods successfully localised

all sources. That is, the miss rate and clutter were both 0 for

all algorithms. The localisation accuracy was fair in all cases

with DPD-MUSIC achieving the lowest error (0.82◦). The pro-

posed method was second best (2.19◦), followed by PWD-SRP

(4.91◦) and PIV (5.71◦).

Using 250 ms observation intervals the rank order of the

algorithms in terms of angular error was unchanged but in

all cases there was a substantial increase in the error of about

3-4◦. However, the proposed method was better than the com-

peting methods both in terms of the mean clutter and the miss

rate. In fact, SSPIV achieved less than half the clutter and miss

rate compared to the next best method (PIV).

For moving sources there was a consistent increase in the

angular error of about 0.5-1.5◦ which is likely due to the lag

introduced by the observation interval. However, the clutter

and miss rates were consistent with those in the static case.

Figure 1 shows the azimuth component estimated by each al-

gorithm as a function of time for a representative trial. In gen-

eral the correspondence between the ground truth trajectories

and the estimated DOAs is clear. Whilst the variance of the

estimates obtained with the proposed method are visibly big-

ger than for DPD-MUSIC, the lower clutter rates and absence of

missed detections suggest that the proposed method may be

better suited to tracking moving sources.

5. CONCLUSIONS

The SSPIV method has been presented in the context of mov-

ing source DOA estimation and compared to state-of-the-art

algorithms in a simulated environment with moderate rever-

beration time (0.5 s). In addition to localisation accuracy,

tracking moving sources also requires low rates of clutter

and missed detections. Of the methods compared, only DPD-

MUSIC achieved lower localisation error for (5.49◦ vs 7.84◦).

On the other hand, the proposed method had substantially

lower rates of clutter (0.24 vs 0.81) and misses (8% vs 28%)

compared to DPD-MUSIC suggesting that SSPIV is well suited

for tracking multiple moving sources.
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Fig. 1. Azimuth component of DOAs as a function of time

estimated using the SSPIV, PIV, PWD-SRP and DPD-MUSIC algo-

rithms. Source assignments used for calculating performance

metrics are indicated by symbol shape (⇥ source 1, O source

2, 4 source 3). Broken lines show ground truth trajectories

and ◦ indicates unassigned (clutter) estimates.
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