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Abstract—This paper proposes a Bayesian unscented Kalman 
filter with simplified Gaussian mixtures (BUKF-SGM) for 
dynamic state space estimation of nonlinear and non-Gaussian 
systems. In the BUKF-SGM, the state and noise densities are 
approximated as finite Gaussian mixtures, in which the mean 
and covariance for each component are recursively estimated 
using the UKF. To avoid the exponential growth of mixture 
components, a Gaussian mixture simplification algorithm is 
employed to reduce the number of mixture components, which 
leads to lower complexity in comparing with conventional re-
sampling and clustering techniques. Experimental results show 
that the proposed BUKF-SGM can achieve better performance 
compared with the particle filter (PF)-based algorithms. This 
provides an attractive alternative for nonlinear state estimation 
problem. 

Keywords—Bayesian unscented Kalman filter; dynamic state 
estimation; nonlinear and non-Gaussian system; Gaussian 
mixture; particle filter. 

I. INTRODUCTION  
State estimation of stochastic dynamic systems from a 

sequence of noisy observations plays a crucial role in many 
practical applications such as target tracking, fault detection, 
signal processing and automatic control problems. The 
dynamic system under consideration is usually modeled by the 
state-space approach, where difference or differential 
equations are used to model the evolution of the system over 
time.  

When the model is linear with Gaussian distributed noises, 
the celebrated Kalman filter (KF) [1] is an optimal state 
estimator which can provide the mean and covariance 
sequentially. For more complicated systems with nonlinear 
models and non-Gaussian noises, there is no closed form 
analytic expression for the posteriori densities. Therefore, the 
state and noise densities have to be approximated by a variety 
of methods such as histogram or Gaussian mixtures equipped 
with nonlinear filters say the extended Kalman filter (EKF) 
and unscented Kalman filter (UKF) [2]. The histogram 
approach represents the density as a set of particles and it 
gives rise to the particle filtering technique [3], which 
approximates the non-Gaussian densities with a set of 
weighted particles. However the computational complexity of 

such methods grows exponentially with the dimension of the 
states and particles. In addition, due to the problems of 
degeneracy and sampling impoverishment [4], the standard PF 
may be rather inefficient in sampling. To alleviate the 
problems, many particle filter (PF)-based algorithms [5-7] 
have been proposed. They employ re-sampling and clustering 
techniques to simplify the density to achieve reduction in 
complexity. For instance, in [6], a greedy expectation 
maximization (EM)-based algorithm for model order 
reduction using Kullback-Leibler divergence (KLD) [8] has 
been employed to simplify the density after re-sampling. 
Similar concept has been extended to a nonlinear setting as the 
Gaussian sum particle filter (GSPF) [5], in which the state 
density for mixture components is approximated using 
weighted particles.  

Recently, for linear non-Gaussian systems, a Bayesian 
Kalman filter (BKF) has been reported in our previous work 
[9], which is able to approximate the non-Gaussian noise as 
simplified Gaussian mixtures with relatively low complexity. 
The effectiveness of the BKF algorithm has been 
demonstrated in video object tracking and other applications 
[10]. Since state estimation of nonlinear systems is frequently 
encountered in many practical applications, it will be highly 
desirable if these nice properties can be extended to the 
nonlinear settings.  

It is the aim of this paper to further extend the BKF 
concept to nonlinear state estimation using the unscented 
transformation technique. In particular, we propose a new 
Bayesian unscented Kalman filter with simplified Gaussian 
mixtures (BUKF-SGM) for state estimation in non-linear and 
non-Gaussian systems. Among different nonlinear filtering 
methods, we have chosen the unscented transform as it is 
renowned for its well performance in approximating the mean 
and covariance of the state using a minimal set of sample 
points, rather than linearizing the nonlinear function as in the 
EKF. While the nonlinearity is captured using the unscented 
transform, the state density in the proposed approach is 
modeled using an efficient GM simplification procedure in 
BKF, which directly simplifies the GMs by minimizing an 
upper bound of the approximation error between the original 
and the simplified models. This avoids the high complexity of 
the re-sampling and clustering encountered in [5-7], while 
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allowing more general state and measurement noises to be 
modeled resulting in better tracking of the states. Like its BKF 
counterpart, the arithmetic complexity of the new BUKF-
SGM algorithm is only a polynomial, instead of exponential, 
function of the state dimension. The proposed BKF-SGM is 
applied to solve a nonlinear and non-Gaussian time series 
estimation problem and the simulation results show that it is 
able to achieve a better tracking accuracy than the PF-based 
algorithms. It therefore serves an attractive alternative to PF 
for nonlinear state estimation, especially for systems with 
more number of states. The rest of the paper is organized as 
follows: Section II describes the details of the proposed 
BUKF-SGM algorithm. In Section III, the performance of the 
BUKF-SGM is evaluated and compared with the PF-based 
algorithms. The conclusion is drawn in Section IV. 

II. BUKF-SGM FOR STATE ESTIMATION OF NONLINEAR 
AND NON-GAUSSIAN SYSTEMS 

For simplicity, we consider the following autonomous 
discrete-time nonlinear state-space model: 

kkkk f wxx += − )( 1 , (1)

kkkk h vxz += )( , (2)
where kx  and kz  denote respectively the state and 
observation vectors at time instant k , and )( 1−kkf x  and  

)( kkh x  are respectively known nonlinear state and 
measurement functions. kw  and kv  are random vectors of 
given distributions, which are assumed to be mutually 
independent and independent of kx . 

2.1 Unscented Kalman Filter (UKF) 
In the UKF framework, the probability density functions 

(pdfs) of the state noise kw  and observation noise kv  are 
usually assumed to be zero mean Gaussian distributed, i.e.: 

),,()( kkkk Np Qwww = , (3)
),,()( kkkk Np Rvvv = , (4)

with 0=kw  and 0=kv , and ),,( kkkN Cuu  denotes a 
Gaussian distribution with mean ku  and covariance kC . 
Rather than linearizing the nonlinear functions as in the EKF, 
UKF utilizes an unscented transform to approximate the non-
Gaussian state density arising from the nonlinearity by a 
Gaussian distribution through sampling at a set of sigma 
points. To be specific, given an L-dimensional state vector kx  
with mean kμ  and covariance kP , the UKF algorithm for 
state estimation can be summarized as follows:   

1) Construct the following sigma points { })1( −klχ with 
corresponding weights { }lw  from the Gaussian distribution 
with mean 1−kμ  and covariance 1−kP : 

κ
κ
+

== −− L
wkk 01)1(0 ，μχ , (5)

( )
)(2

1
，)( 11)1( κκ

+
=++= −−− L

wL llkkkl Pμχ , (6)

( ) llLlkkklL wwL =+−= +−−−+ ，)( 11)1)(( Pμχ κ , (7)

where Ll ,...,1= , κ  is the scaling parameter and 
( )

lkL 1)( −+ Pκ  represents the l-th column of the matrix 

( )1)( −+ kL Pκ . 

2) Propagate each sigma point through the nonlinear 
system state function: 

lf klkkkl ∀= −− ，)( )1()1( χχ . (8)
3) Approximate the predicted density after the nonlinear 

state function by a Gaussian distribution by using the 
ensemble mean and covariance estimates as follows: 

)1(
2

01 −=− = kkl
L

l lkk w χμ , (9)

k
T

kkkklkkkkl
L

l lkk w QμχμχP +−−= −−−−=−  ))(( 1)1(1)1(
2

01 . (10)

4) Construct a similar set of sigma points from the 
approximately predicted Gaussian distribution with mean 

1−kkμ  and covariance 1−kkP : 

κ
κ
+

== −− L
wkkkk 01)1(0 ，μχ , (11)

( )
)(2

1
，)( 1)1( 1 κκ

+
=++= −− − L

wL l
lkkkkl kk Pμχ , (12)

( ) llL
lkkkklL wwLkk =+−= +−−+ − ，)( 1)1)(( 1 Pμχ κ , (13)

where Ll ,...,1= . 
5) Propagate the sigma points through the nonlinear 

system measurement function and calculate the predicted 
measurement mean: 

lh kklkkkl ∀= −− ),( )1()1( χz  (14)

)1(
2

01 −=− = kkl
L

l lkk w zz . (15)

6) Estimate the measurement covariance and cross-
covariance: 

k
T

kkkklkkkkl
L

l lkk w RzzzzPz +−−= −−−−=−  ))(( 1)1(1)1(
2

01, , (16)
T

kkkklkkkkl
L

l lkk w ))(( 1)1(1)1(
2

01, −−−−=− −−=  zzμχPxz . (17)

7) Calculate the posteriori estimation of the state and 
covariance matrix from the ensemble averages obtained from 
the sigma points: 

1
1,1,

−
−−= kkkkk zxz PPK , (18)

)( 11 −− −+= kkkkkkk zzKμμ , (19)
T
kkkkkkk KPKPP z 1,1 −− −= . (20)

In the above UKF, steps 1 to 3 (from eq. (5) to eq. (10)) are 
known as the time update and the remaining steps are referred 
to as the measurement update. While the UKF assumes the 
state noise kw  and measurement noise kv to be Gaussian, we 
consider a new BUKF-GM, which allows the noises to be 
non-Gaussian and they can be approximated using GMs.   

2.2 Bayesian UKF with Gaussian Mixture (BUKF-GM) 
In the proposed BUKF-GM, the pdfs of the state noise kw  

and observation noise kv are characterized by finite GMs: 

),,()( 1 ikikk
I
i ikk Np Qwww  == α , (21)
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),,()( 1 jkjkk
J
j jkk Np Rvvv  == β , (22)

where )(JI is the number of components of the corresponding 
noise, )( jkik βα is the probability of the corresponding 
component with  = =I

i lk1 1α (  = =J
j jk1 1β ). Now suppose 

further that the previous posteriori pdf of the state is modeled 
by the following GM with G  components: 

),,()( )1()1(11 )1(11 −−−= −−− = kgkgk
G
g kgkk Np Pμxzx γ , (23)

where )1( −kgγ  is the weight of the corresponding component. 
Then the predictive a priori density can be obtained as: 

，),,(
)()()(

)1()1(1 )1(

11111

−′−′
′
=′ −′

−−−−−




=
=

kkgkkgk
G
g kkg

kkkkkkk

N
dxppp

Pμx
xxzxzx

γ
 

 

(24)

where ，GIG =′  ，1 1 )1()1()1(  = = −−−′ = G
g

I
i ikkgikkgkkg αγαγγ and 

)1( −′ kkgμ  and )1( −′ kkgP  are respectively the mean and covariance 
of corresponding Gaussian component, which can be predicted 
using the time update of UKF from eq. (5) to eq. (10). 

Furthermore, given the current observation at time instant 
k , the corrected a posteriori density can be derived as follows: 

，),,(
),,(

)),(,(
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(25)

where kkkkkk dppc xxzzx )()( 1
1  −

− = represents a normalizing 
constant, GIJJGG =′=′′  is the updated component number, 

，)()( 1 1 )1()1(  ′
=′ = −′−′= G

g
J
j kkjjkkkgkkjjkkkg pp

kg
xzxz βγβγγ "  and 

kg"μ  and kg"P  are respectively the mean and covariance of the 
corresponding Gaussian component, which can be estimated 
using the measurement update of UKF from eq. (11) to eq. 
(20).  It can be noticed that the number of mixture components 
will grow from G  to G′  in the predictive step and from G′  
to G ′′  in the subsequent measurement correction step. Hence, 
the number of mixture components and hence the complexity 
will grow exponentially with time, which complicates online 
applications. We now address this issue by means of an order 
reduction approach, which help to maintain the number of 
components over time. 

2.3 BUKF with Simplified GM (BUKF-SGM) 
Consider the following GM model with n  components: 

 == n
j jjf 1 )()( xx φα , (26)

where ),()( jjj N Huxx −=φ is the j-th components and jα  
are the mixing coefficients such that 11 = =

n
j jα . In the 

BUKF-SGM, our goal is to approximate )(xf  as a simplified 
mixture model with fewer components ,)()( 1 == m

i ii gwg xx  
where )~,()( iii Ng Htxx −=  with nm < . iw , it  and iH~  are 
respectively the weight, center and covariance matrix of the i-
th component )(xig . iw ’s should be summed up to one. 

Given a distance metric ))(),(( xx gfD  between functions 
)(xf  and )(xg , the error of approximating )(xf  with )(xg  

is ( ) 5.0
2))()(())(),((  −= xxxxx dgfgfD . Different from the 

conventional re-sampling and clustering techniques, we 
adopted the two-step GM simplification procedure developed 
in [11]. More precisely, at the k-th iteration, the component 
mixture is partitioned into m  groups { )(

1
kS , )(

2
kS , ..., )(k

mS }. 
Step 1 (Mean update): The representative component 

)()( xk
iC  for )(k

iS  that minimizes the local quantization error 
is .))()((minarg)( )( 2

)(

)(  ∈ −= k
iSj jj

C

k
i dCC xxxx

x
φα Interested 

readers are referred to [11] and references therein for solving 
this problem using coordinate descent. 

Step 2 (Clustering): Given m
i

k
i

k CC 1
)()( )}({ == x , one re-

assign )(xjφ  to the nearest )()( xk
iC  based on the distortion 

measure ))(),(( )(
, xx j

k
iji CDD φ= , and then update )(k

iS . 
The above process is repeated until either 1) the change in 

total distortion or m
i

k
i

k CC 1
)()( )}({ == x  is less than a certain 

threshold, or 2) a maximum number of iteration is reached.  
Since the unscented transformation helps us to 

approximate the nonlinear density for each component after 

TABLE I BUKF-SGM ALGORITHM 
Initialization 

),,()( 0001 00 gg
G

g g Nxp Pμx =
= γ  

for ,...2,1=k  
BUKF-SGM Prediction: 
for Ii :1=  

for Gg :1=  
Gigg )1(' −+=  

Estimate )1( −′ kkgμ and )1( −′ kkgP  with )1()1( , −− kgkg Pμ and 

ikQ  (UKF Time Update) 

ikkgkkg αγγ )1(
*

)1( −−′ =  

end 
end 

)(
1 1 )1(

*
)1()1(  = = −−′−′ = G

g

I

i ikkgkkgkkg αγγγ  

BUKF-SGM Correction:
for Jj :1=  

for GIg :1'=  
GIjgg )1('" −+=  

Estimate kg"μ and kg"P with )1( −′ kkgμ , )1( −′ kkgP  and 

jkR  (UKF Measurement Update) 

)()1(
*

kkjjkkkg p
kg

xzβγγ −′=
"

 

end 
end 

))((
1 1 )1(

*
kkj

G

g

J

j jkkkg p
kgkg

xz ′

=′ = −′= βγγγ
""

 

BUKF-SGM Order Reduction: 
Compute： 

G
ggk 1}{ =γ , G

ggk 1}{ =μ  and G
ggk 1}{ =P  

end 
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the nonlinear measurement and state transformation, a set of 
Gaussian components are obtained at the end of each iteration, 
which can be simplified using the GM simplification 
procedure with fewer components so that the number of 
components after each iteration can be maintained at a 
constant level. This leads to a great reduction in complexity in 
comparing with conventional re-sampling approaches. For 
instance, if the component number and the dimension of the 
state is respectively n and d , the complexity of conventional 
approach such as the KLD-based model order reduction 
method in [7] is )1000( 22dnO , while the complexity of the 
function approximation-based method is )(( 3 mLnTdO + , 
where T and L are the numbers of iterations which are 
typically small [11]. Table I summarizes the proposed BUKF-
SGM algorithm.  

III. SIMULATION RESULTS 
We consider the following nonlinear and non-Gaussian 

time series estimation problem [7], which is commonly used 
in the literature. The process model is given by: 

kkk wxkx ++−+= −11))1(sin(1 φωπ , (27)
where kw  has a Gamma pdf, )5.0,3()( Gawp k = , and 

04.0=ω  and 5.01 =φ  are scalar parameters. Data samples are 
assumed to be taken from k=1 to 60. The underlying state 
distribution can be heavy tailed and asymmetric due to the 
Gamma distributed process noise and the nonlinearity of the 
state function. The non-stationary observation model is 
defined as: 





>+−
≤+= ,30,2

,30,
3

2
2

kvx
kvxz

kk

kk
k φ

φ  (28)

where 2.02 =φ  and 5.03 =φ . The measurement noise is a 
zero-mean Gaussian distribution, i.e., )10,0,(~ 5−

kk vNv .  

We compare the performance of the proposed BUKF-
SGM algorithm with the standard PF, GSPF [5], SPPF [12] 
and GMSPPF [7] in terms of the following root mean squared 
error (RMSE) measure, which is defined as: 

 = −= M
m kkk mxmx

M
RMSE 1

2))(ˆ)((1
， (29)

where )(mxk  and )(ˆ mxk  denote respectively the true and 
filtered state at the m-th Monte Carlo (MC) run. The settings 
are: 1) For the standard PF, the number of particles is 2000 
and re-sampling is performed with a threshold value of 0.001. 
2) For GSPF, the initial state pdf is modeled by five GMs with 
equal weights, i.e., )10,0,(2.0)( 0

5
10 xNxp g ==  and the 

Gamma pdf of the process noise is approximated by two GMs 
using the EM algorithm. The number of particles for GSPF is 
the same as the standard PF. 3) For SPPF, GMSPPF and 
BUKF-SMG, the initial state pdf is identical to that in the 
GSPF while the scaling parameter κ for sigma point 
generation is set to the recommended value with 23 =−= Lκ . 
4) The number of particles for GSPF, SPPF and GMSPPF is 
the same as the standard PF.  

Experiments were conducted on a computer with Intel(R) 
Core(TM) i7-2600K CPU and 8192MB RAM. The RMSE 

averaged over 100 Monte Carlo trials for different algorithms 
is compared in Fig. 1. The RMSE values in Fig. 1 are further 
averaged over time and are shown in Table II. The results 
demonstrate that the proposed BUKF-SGM algorithm is able 
to obtain better estimation accuracy in comparing with the 
other algorithms. The performance of PF is similar with [7]. 
The reason for its bad performance is mainly due to the highly 
peaked likelihood function of the observations (arising from 
the small observation noise variance) fused with the spurious 
jumps in the state introduced by the heavy tailed process noise, 
which causes degeneracy and sampling impoverishment for 
the PF. GSPF, SPPF and GMSPPF can handle the case 
properly. However their accuracy mainly relies on the number 
of sampling particles and as we mentioned before the 
computational complexity will grow rapidly when the 
dimension of the states or the number of particles becomes 
larger. Compared with these PF-based algorithms, the overall 
performance of the proposed BUKF-SGM is better and its 
computational time averaged over 100 MC trials is also 
relatively lower as shown in table II. 

IV. CONCLUSION 
A novel BUKF algorithm with simplified Gaussian 

mixtures (BUKF-SGM) has been presented for dynamic state 
space estimation in nonlinear and non-Gaussian systems. 
Simulations show that the proposed BUKF-SGM algorithm 
can achieve better performance than the PF-based algorithms, 
which provides an attractive alternative to conventional 
nonlinear state estimation algorithms. 
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