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Abstract—In the past years, many distributions have
been proposed to model SAR images. In previous works,
it has been shown that Mellin transform is a powerful
tool to analyse random variable products: when speckle
is modelled by a Gamma distribution, and when texture
can be modelled by a “classical” distribution, Mellin
convolution provides analytical expressions of SAR im-
age distribution so that parameter estimations can be
processed [13], [11].

In this paper we focus on the product of probability
density functions, and more specifically on the Inverse
Generalized Gaussian distribution [10]. This approach
has been validated in SAR image processing by Frery et
al. [7]. We show that the Mellin statistics framework
can provide some enlightments about this probability
density function family, and can clearly link the Mellin
convolution pdf family and the product pdf family.

Finally, it will be shown that the Meijer functions give
a unified framework for many SAR distributions so that
quantitative comparisons between pdf can be achieved.

I. INTRODUCTION

Many SAR sensors are regularly acquiring images
of the earth for various applications: cartography and
mapping, urban area monitoring, damage assesment,
3D reconstruction, change detection, deformation mon-
itoring, etc. Although their all-weather and all-time
capacities make these sensors very useful, due to the
coherent imaging system they suffer from a strong
speckle noise. Since the beginning of SAR imaging
systems, many models for amplitude or intensity dis-
tributions have been proposed. Recent satellite sensors
and airborn campaigns provide very high resolution
images making necessary adapted models.

This paper proposes a unified vision through Mellin
transform of many distributions that have been pro-
posed in the past few years. There are two main contri-
butions in this paper. First, we give some enlightments
on distributions derived from products of distributions
and analyze them in the Mellin framework. Then we
present the Meijer functions as a generative family al-
lowing a simple manipulation of the SAR distributions.

The paper is organized as follows. First, we briefly
recall the log-statistics framework (section II). Then,
we compare different ways of defining distributions
through Mellin convolution or product model, and

978-0-9928-6265-7/16/$31.00 ©2016 |IEEE

show how they have been used for SAR images (sec-
tion III). Eventually, we introduce Meijer functions and
their usefulness for SAR imagery (section IV).

II. THE LOG-STATISTICS
A. Log-statistics framework

SAR images are a typical example of positive data
polluted by a multiplicative noise called speckle. With
the help of Goodman’s approach [4], homogeneous
areas can be modelled by the Rayleigh-Nakagami
distribution for amplitude data, and by the Gamma
distribution for intensity data. Yet textured areas seem
to be more difficult to model as the proposed ap-
proaches have no physical justification: at present time
no consensus can be found for probability density
function (pdf) modelling on non homogeneous areas.

As the data are positive, “log-statistics” ([11], [13])
can be used so that very useful tools can process
these images. Based on the “second kind characteristic
function” defined by a Mellin transform of the pdf
instead of a Fourier transform in regular statistics, this
approach well matches with SAR data.

Firstly, Rayleigh-Nakagami RN [u, L] (for ampli-
tude data) and Gamma distribution G [u, L] (for in-
tensity data) have second kind characteristic functions
easy to deal with. Reference [13] provides their pdf’s
expression associated to their second kind characteris-
tic functions and their log-cumulants.

Moreover, multiplicative noise acts as a Mellin con-
volution in a same way as additive noise acts as a
regular convolution.

For example, if p(x) and ¢(x) are two pdf, ¢(z)
acting as multiplicative noise on p(x), the resulting
pdf can be written as :

7€) =p(e) 2ale) @ ME16) = MBI M) 2
with % the Mellin convolution and M the Mellin
transform [13]. As for regular statistics, the second
characteristic function of second kind is defined as the
logarithm of the second kind characteristic function, so
that its derivatives can be called “log-cumulants”. For
our previous example (r(xz) = p(z) * g(x)), we have:

Frm = Fpn + Fgm Vn €N )
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Globally speaking, a pdf is generally defined by a scale
parameter (generally its mean value or its mode) and
shape parameters. In the log-statistics approach, only
the first log-cumulant depends on the “mean value”
parameter, the higher log-cumulants depending only on
shape parameters.

Now, an important property of the Mellin approach
can be emphasized. If a variable x is defined by its pdf
p(z), we can define a new variable y so that y = z”
and we denote by ¢(y) its pdf. If ¢,(s) is the second
kind characteristic function of p(z), the second kind
characteristic function of ¢(y), ¢4(s), can be written

as : N )
_ sTn—
¢q(3) = ¢p ( " )

B. A first famous example: the K distribution

3

The first famous example of non homogeneous area
is the K distribution proposed by Jakeman [9]. By
modelling the textured area as a Gamma distribution,
and assuming that speckle acts as multiplicative noise,

Jakeman obtains this K distribution:
MAL _q

_ 1 2L M (LMax) 2
K M) = vmyron s ( r )
Kyoo {2 (LQLM)] with 1> 0, L >0, M >0
“
Yet Epstein [6], thirty years before, had proposed an
interesting approach with the help of Mellin transform
so that the K distribution can be written as :

K, L,M] = Glu,L] xG[1, M] (5)

The additive properties of log-cumulants directly allow
the expression of its log-cumulants:

k1 = log(u)

T+ (W(E) — log(L) + (W(M) — log(M))
e = W(L, L)+ (1, M), 6)
Ry = W(2,L) + U(2,M).

so that the effects of multiplicative noise can be seen
only by adding the log-cumulants.

C. The ko — R3 diagram

In order to easily compare some pdf, and as ko and
k3 depend only on shape parameters, an oversimple
comparison of these two parameters can be proposed:
by mimicing the famous $; — 32 diagram [8], we can
construct the Ko — K3 diagram. As, by definition, Ao
is always positive for pdfs, this parameter is chosen to
be the vertical axis, k3 corresponding to the horizontal
axis [13].

As we can see on figure 1, the Gamma distribution
and the Inverse Gamma distribution play a symetrical
role, the log-normal distribution being restricted on the
vertical axis. The K distribution is located up to the
Gamma distribution and down a caustic defined by a
specific K distribution : KC[u, L, L]. In this diagram,
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Fig. 1. The k2 —K3 diagram : dotted lines correspond to the Gamma
distribution (left) and the Inverse Gamma distribution (right). The K
distribution is located up to the Gamma distribution dotted line and
down the specific K-caustic (thin line). The heavy tailed distributions
correspond to the positive K3 quadrant.

it is possible to define the location of a lot of usual
distributions. More, the construction of distributions
based on a Mellin convolution is directly obtained in
the Ko — K3 diagram by an oversimple sum of their
log-cumulants.

III. SAR IMAGES : TOWARDS HIGH RESOLUTION
DATA THROUGH “COMPOUND” DISTRIBUTIONS

At present time, the improvements in SAR image
resolution allows the possibility to deal with metric or
submetric images (provided for example by Terrasar-
X sensor or Cosmo-Skymed one). Comparing with
decametric resolutions of sensors like ERS, advances
are significant. Indeed, in a decametric pixel enlighted
by a centimetric wavelength, a lot of various targets
are mixed so that heterogeneous areas can appear
as homogeneous ones, yielding Gamma distribution
for intensity values. When resolution is improved, for
example in the case of metric pixels, targets can be
isolated so that the values between pixels vary strongly,
yielding heavy tailed distributions.

Figure 2 provide a ko — k3 diagram on homogeneous
area, both for decametric sensor (ERS) and for metric
one (Cosmo-Skymed) : the scatter plot is rather located
around the theoretical value, i.e. the a ko — K3 of a
Gamma distribution with L = 1.

In the case of heterogeneous data, acquired on the
same Paris area (figure 3), the Ko — k3 diagram for de-
cametric data (ERS) is located in the left quarter plane.
For metric data (Cosmo-Skymed), the scatter plot
occupies the whole part up to the Gamma distribution
and the inverse gamma one: more, some plots belong
to the heavy tailed distribution area (corresponding to
positive values of &3).

To cope with heterogeneous areas for image pro-
cessing, a parametric approach requires an easy to
use probability density function. At present time, three
approaches can be proposed : the first one is based
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Fig. 2. Ro — k3 diagrams on homogeneous areas for ERS sensor
(up) and Cosmo-Skymed sensor (down). Each point in the diagram
corresponds to the parameters of the distribution estimated on a 512
samples window.
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Fig. 3. Ko — k3 diagrams on heterogeneous areas for ERS sensor
(up) and Cosmo-Skymed sensor (down). Each point in the diagram
corresponds to the parameters of the distribution estimated on a 512
samples window.

on Mellin convolution, the second one consists in
changing the power of the variable and the third one
is simply a product.

A. The Mellin convolution

Starting from the Gamma distribution and the In-
verse Gamma distribution, the Mellin convolution acts
as a construction set so that a lot of possible distri-
butions can be proposed. In radar image processing,
there are two classical three parameters distributions,
the K distribution and the Fisher distribution, defined
by Mellin convolution as follows:

Kl LM] = Gl Ll %¢[L,M] (D
]'-[,LL,L,M] = g[uaL} ;QI[LM] (8)
By construction, second kind characteristic functions

are simply obtained by multiplying the second kind
characteristic functions :

o (s) = bgiu,L) Pgn,m )
or(s) = bgu.L) Pozii,m (10)

and log-cumulants are simply obtained by adding the
log-cumulants. Let us remark that, for Fisher distri-
bution, the limit case M — oo yields the Gamma
distribution, and the limit case L — oo yields the
Inverse Gamma distribution.

This approach can be extended at any number of
combinations of Gamma pdf and Inverse Gamma pdf.
For example, the Delignon’s U distribution [3] can be
written as:

Ulp,L,M,N] = G[1,M] *xGZ[1,N] *G[1,L]
(1)
In this Mellin convolution framework, an easy-to-use
formulation can also be obtained with the help of
Meijer functions which will be seen in section IV.

B. “Generalized” distributions

Another way to obtain easily a distribution dealing
heavy tailed trend consists in taking any n-power of
the variable = of a pdf. In the case of Gamma distribu-
tion, we obtain the “Generalized Gamma distribution”
GG [p, L,n] which fullfills an important part of the
Ko — K3 diagram (see figure 1).

1 n
1 1 nL—1 LM
Ja) = 11 ( ””) e

p I\ p

T

GG [u, L,n

(12)
Due to the properties of the Mellin transform, starting
from the Gamma distribution, second kind character-
istic functions and log-cumulants derive directly from
those of Gamma distribution (relation 3), yielding:

I(L+ =2
8+77_1 s— ( n )
bgg(s) = dg () = p 1T
Ui L™ T(L)
(13)
and
_ (L) — log(L
fio= log() + S loslh)
. v(1, L
o= LD (14)
Ui
W(r, L
M (080
777"
iff n» # 0. Let us remark that the case n = —1

corresponds to the Inverse Gamma distribution and the
case 7 = 1 corresponds to the Gamma distribution.
At present time, this model is currently used in SAR
image processing. Yet, in the Ko — K3 diagram, there is a
discontinuity as the 3-parameters Generalized Gamma
distribution cannot deal with data so that k3 = 0
(corresponding to  — 0T or 5 — 07).

C. A “product like” empirical model

A third way to obtain an all-purpose distribution
consists in a multiplication between a Gamma distribu-
tion and an inverse Gamma distribution: proposed by
Halphen in 1941 [5] and better-known as Generalized
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Inverse Gaussian Distribution [10], this pdf can be
written as:

Hia, B,e](z) = AzoteBe—ea )

As « is an intuitive parameter devoted to tune the
distribution mode, in this paper we propose to deal with
the modified Halphen distribution HM |, 3, €](x) de-
fined as:

HM(p, B,e](z) = T
(1, B,€](x) (5 K (V52)

5
B—e—1 Bz
z e
m

At first glance, the Mellin approach is not designed
to deal with product of functions. Yet, a theoretical
result can be used in this case [2] : if p(s) is the Mellin
transform of a function f(z) defined on IR'*, and ¢(s)
is the Mellin transform of the function g(x) defined on
IR™, then the Mellin transform of the function h(z) =
f(x) g(x) can be written as:

1 c+ioco

M h(x)] (s) = p(s—w)y(w)dw (17)

2] T Je—ioco

By this way, we can obtain the second kind character-
istic function of the Halphen distributions. In the case
of the modified Halphen distribution, we can write :
s—1

s—1 €\ 2
dum(s) = m (ﬂ) Ky 11p- (2@

As for the Fisher distribution case and the General-
ized Gamma distribution case, we have :

o if £ — 0, then HM|u, B, €] — Glu, 5],

o if 5 — 0, then HM|pu, B,¢] = GZ|u, €],
so that, in the Ko — K3 diagram, the modified Halphen
distribution fullfills the area bounded by the Gamma
distribution (at left) and the inverse Gamma distribu-
tion (at right) exactly as the Fisher distribution.

Yet, the Halphen modified distribution differs fun-
damentally from the Fisher distribution case and the
Generalized Gamma distribution because, if 5 > 0
and € > 0, all its positive and negative moments are
defined (as for the log-normal distribution). A priori,
this distribution does not well match heavy tailed
distributions and cannot model correctly high-valued
outliers.

D. Application to SAR data: “compound” distribu-
tions

Using the previous paragraphs, we can apply these
results in the case of SAR images. At present time, the
main problem in SAR image processing is to cope with
the heterogeneous textures which can be found (see
figure 3), leading to the so called “compound” distribu-
tions of Goodman (called also “speckled speckle”). As
speckle can be seen as multiplicative noise, the Mellin
approach has to be privilegiate, so that, for intensity

data, by assuming a speckle modelled by a Gamma
distribution, and if g(z) is the texture model, the image
pdf is modelled by:

p(x) = Gl L] (z)*g(x)

In the case of amplitude data, the speckle can
be modelled by a Rayleigh-Nakagami distribution
RN [, L] (z), and if h(z) is the amplitude texture
model, the image pdf is modelled by :

q(z) = RN [u, L] () * h(z)

As we have seen before, using the convolutive
approach for intensity data, we have the following three
cases :

o if g(z) = G[1, M](x), we have obtained the K

distribution K[y, L, M],
e if g(z) = GT[1,M](x), we have obtained the
Fisher distribution F[u, L, M],
o if g(x) = Flu, M, N], we have obtained the U
distribution U [p, L, M, N].
As in the Mellin world, the “generalization” of a
pdf is untricky (see the relation 3 for the second
kind characteristic function), it is very easy to obtain
these three cases for amplitude data, yielding the K
amplitude distribution C[u, L, M], the Fisher ampli-
tude distribution Fa[u, L, M] and the U amplitude
distribution U4 [u, L, M, N].

Let us remark that, for I/ and {4, we have the

obvious result :
lim]w_mou [/,L, L, ]\47 N} =
{ llInM_>ooZ/[A [,u, L, ]\47 N} =

19)

(20)

Flp, L, N]

Fa [,LL, L ’ N ]

(2D

Frery [7] proposes to model the texture by a
Halphen-like distribution and the multiplicative noise
as a Rayleigh-Nakagami distribution. The resulting
distribution second kind characteristic function is di-
rectly the product of the Halphen modified second
kind characteristic function (in the case of amplitude
data and using the previous expression of ¢y aq(s))
and the Rayleigh-Nakagami distribution second kind
characteristic function:

= 1 (£>%1 r(s2+1L)

B ko) \B L3 ) (22)
Ks%lJroc (2 v /88)

With the help of Mellin transform tables [12], and by

using basic Mellin transform properties, we can derive
the analytical expression of such a distribution :

V) T (w?) Nom
2L (E—i—LJcQ)TK,aJrL (2 ﬁ(e—i-LxQ))
(23)

which corresponds exactly to the Frery relation (6) in
[7].

With a classical analysis, the limit cases of this
expression are not at all intuitive. Yet, by analysing the
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limit cases of the second kind characteristic function
(relation 22), we can easily derive these two following
results :
o if ¢ — 0,
A [,u> B, L]’
o if B — 0, then we obtain a Fisher distribution
Fa [U7 =) L]
By comparing with the U distribution previously pre-
sented, we obtain exactly the same limits.

then we obtain a K distribution ~

IV. THE MEIJER FUNCTIONS APPROACH

In this section we introduce the Meijer functions that
can be seen as a “generative” family of SAR distribu-
tions. We will see that they have a property allowing
an easy handling of such generated distributions.

The Mellin convolution approach allows a rather
concise expression for “compound” distributions. In
the case when the elementary pdf are either Gamma
distribution or Inverse Gamma distribution, the second
kind characteristic function can be written as a product
of Gamma functions. For example, by combining P
Gamma distribution with shape parameter L, and @
Inverse Gamma distribution with shape parameter M,,,
we obtain the second kind characteristic function as:

DT (L, +s—1) (3T (M,+2—s)
= L —an

p=1
More, by using Inverse Mellin transform, we obtain
the general expression of the resulting pdf:

C+ZOS
27i /C U
(25)

and by comparing this expression with the definition
of Meijer’s functions [1]:

(24)

I' (L, —|—5—1)HF(MQ—|—2—5

>
ran)

=1

ém,n a1y...,0p 5 Qpyly--.,0p _

g bl,... b N bm+1,...,bq

1 c+ico H T'(bj+s) Hj: I(l-a;—s) _s
2im Je—ioco a x™%ds

P
j:m+1r(1 bj—s) H s Dlajts)

(26)
we can assess that the resulting pdf can be written as
a Meijer function :

Hp pr
Hq Mq/'l’

Ly —

—P,Q

~

1,...,

27)
The main interest of this rewriting is the fact that the
primitive of a Meijer function is a Meijer function
[1]. Several expressions exist for the primitive and we
privilegiate this one :

éanrl ( Lag+1,...;a,+1 ;

prLat \ Ly b+l

pi1+ 1,00, +1

0,bm41+1,...,05+1

AN aiy---30n 5 An4l,---,0p

G (x bi,oo bm 3 g1, by
(28)

By this way, we derive directly the cumulative function
of the pdf (equation 27) :
;)

(L.’L‘ L,=Mi+1,...,—Mg—1;
' (29)

M W Ly,....Lp

This link between the pdf and the cumulative function
allows an easy handling of such pdf. Indeed it be-
comes easy to estimate the parameters through the log-
cumulants and to draw samples from the distribution.
In particular, heterogeneous areas of SAR images can
be well modelled with the Meijer functions thanks to
their high flexibility.

—P,Q+1
Goi1,pi

V. CONCLUSIONS

In this paper we have investigated three different
ways of generating texture or compound distributions
in the case of SAR data: product of random vari-
ables, power of random variable, and direct product of
pdfs. These frameworks have given birth to different
pdfs that are popular in SAR imagery. We have also
presented the Meijer functions providing a generative
framework through the Mellin transform in a very
flexible way.

Further works include experiments of this frame-
work on real SAR data and a theoretical and empirical
study of the distances between distributions both for
pdf dictionary simplifications and change detection
applications.
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