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ABSTRACT

In this paper, we address the problem of sparse signal re-
covery, from multi-bit scalar quantized compressed sensing
measurements, where the saturation issue is taken into ac-
count. We propose a convex optimization approach, where
saturation errors are jointly estimated with the sparse signal to
be recovered. In the proposed approach, saturated measure-
ments, even though over-identified, are considered as outliers
and the associated errors are handled as non-negative sparse
corruptions with partial support information. We highlight
the theoretical recovery guarantee of the proposed approach
and we demonstrate, via simulation results, its reliability in
cancelling out the effect of the outlying saturated measure-
ments.

Index Terms— Multi-Bit Quantized Compressed Sens-
ing, Saturation, Sparse Corruptions, Sign Constraint, Convex
Optimization

1. INTRODUCTION

Classical Compresses Sensing (CS) enables high-dimensional
K-sparse signals x ∈ RN to be recovered from significantly
fewer real-valued, possibly noisy, linear measurements y ∈
RM . In this context, convex optimization using `1 minimiza-
tion provides an appealing theoretical framework where the
sparsest signal is exactly recovered in the noiseless case and
stably recovered in case of additive noise with bounded en-
ergy, using the Basis Pursuit (BP) and the Basis Pursuit De-
noising (BPDN) decoders [1], respectively. In practice, CS
measurements are unavoidably distorted during the quantiza-
tion step involved in the acquisition process. Using BPDN
for signal recovery would amount to consider the unrealis-
tic assumptions of infinite range (unsaturated) quantizer and
Gaussian quantization noise.

Recently, convex optimization for Quantized Compressed
Sensing (QCS) has been investigated by considering different
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data-fidelity constraints yielding to different adaptations of
BP. By ignoring the saturation phenomena, the quantization
noise is rather uniformly distributed and as suggested in [2]
and studied in [3], the `2 norm fidelity in BPDN is replaced
by an `∞-norm of the residual error, yielding the Quanti-
zation Consistency (QC) constraint. In [4] the authors pro-
posed the Basis Pursuit De-Quantizer of moment p (BPDQp),
the quantization noise is assumed to be of bounded `p norm
for 2 ≤ p ≤ ∞. The optimal moment p is finite and in-
creases with the oversampling ratio m/K, so that BPDQp
data-fidelity gets closer to the QC constraint. In [5], the au-
thors incorporate an additional gaussian noise and propose an
`1-regularized maximum likelihood decoder that outperforms
the LASSO decoder (the equivalent unconstrained formula-
tion of BPDN) for coarsely quantized (unsaturated) measure-
ments.

In practice, due to the quantizer finite dynamic range, a
fraction of S measurements may saturate, which leads to large
and potentially unbounded errors, and implies a substantial
departure from the above assumptions. The QC approach
of [3], accounts for both quantization and saturation consis-
tency. From another perspective, saturated measurements can
be seen as outliers that would significantly deteriorate the
recovery performance of reconstruction approaches based on
residual norm minimization. In this scope, the authors in [6],
suggest to discard potentially saturated measurements and
to use BPDN on the remaining measurements. To prevent
wasting valuable measurements, the saturation consistency
method of [6] decouples the measurements and integrates a
saturation consistency constraint. These two approaches lead
to a swamping problem consisting of classifying non-outlying
artificially saturated measurements as outliers. These mea-
surements do not contribute in the denoising process, they are
either accidentally discarded or only involved in a consistency
constraint.

In this paper, we provide a robust reconstruction method
that blindly reaches the oracle-assisted rejection approach
performance, where only effectively saturated measurements
(true outliers) are removed. We propose to jointly estimate
the saturation noise and to remove it from the measurements
for a clean signal recovery. When the sparsity level K is
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perfectly known, we have integrated the joint estimation
approach within a greedy reconstruction procedure in [7],
without theoretically investigating the recovery guarantee.
In this paper, we study the convex optimization approach,
suitable for the practical case of unknown K, and we provide
theoretical recovery guarantees.

It should be noted that the idea of joint estimation using an
optimization based approach, has been investigated for QCS
in different settings. In [8], the authors proposed to jointly
estimate unquantized noisy measurements under a QC con-
straint, using Bayesian inference. In the context of one-bit
CS, the authors in [9] and [10], consider joint estimation of
the sparse sign-flip positions caused by measurement noise, in
non-Bayesian and Bayesian frameworks, respectively. Differ-
ently from [8]-[10], our joint estimation approach considers S
extra unknowns instead of M .

The rest of the paper is organized as follows. Section II
presents the observation model. Section III links the rejection
approach to the optimal reconstruction strategy when the out-
lying saturated measurements are correctly identified. Sec-
tion IV proposes the convex optimization-based recovery ap-
proach and provides its theoretical recovery guarantee. Sec-
tion V demonstrates via simulation results, the performance
gain of the proposed method, mainly for coarse quantization.
Finally, Section VI concludes the paper.

In the sequel, bold-face lowercase and capital letters rep-
resent vectors and matrices, respectively. For an index set
T , T c denotes its complement. Notations xT and ΦT stand
for the sub-vector of elements of x, and the sub-matrix of
columns of Φ, indexed by T , respectively. The best K-term
approximation of a x, obtained by keeping theK components
of largest magnitude and zeroing the others, is denoted x(K).
The support of x, denoted supp(x), corresponds to the or-
dered set of indices of its nonzero entries. The `1-norm of
x ∈ RN , is defined as ‖x‖1 ,

∑N
n=1 |xn|. The sign opera-

tor sign and the inequality symbol �, are applied on vectors,
component-wise.

2. QUANTIZED COMPRESSED SENSING MODEL

We consider that the acquisition of CS measurements involves
a b-bit uniform midrise quantizer operator Qb with quantiza-
tion interval δ, 2b quantization levels and a saturation level
g = 2b−1δ, such that the QCS model can be written by con-
sidering a two-component noise

y = Qb(z) = Qb(Φx) = Φx + e + n, (1)

where Φ ∈ RM×N with M < N is the measurement matrix
and e and n ∈ RM account for the saturation errors and the
quantization errors, respectively. At a given saturation rate, e
would only corrupt a fraction E of the unquantized measure-
ments z. and we have em = 0 or |em| > δ

2 . The only infor-
mation available on the support E of e, is that it is included

within the known support of potentially saturated measure-
ments defined as S , {m ∈ {1, . . . ,M} : |ym| = g − δ

2}.
Moreover, the vector e satisfies a sign property of the form
sign(eE) = −sign(yE).

By exploiting partial support information on the corrup-
tion term e, the model in (1) can be adjusted as follows

y = Φx + Θs + n and ssupp(s) � δ
2 , (2)

where Θ = ISΛ ∈ RM×S , s = ΛeS ∈ RS , Λ ∈ RS×S
is a diagonal matrix whose diagonal elements are given by
−sign(yS).

3. RECOVERY WITH PERFECT IDENTIFICATION
OF SATURATED MEASUREMENTS

Imposing saturation consistency helps improving the perfor-
mance over the rejection approach [6]. However, it is not
clear whether it reaches the performance of the oracle assisted
rejection scheme where only effectively saturated measure-
ments yE are discarded. Indeed, it has been shown in [11], that
the optimal recovery strategy to reconstruct a sparse signal x
from its sparsely corrupted measurements y = Φx + Θs,
with general Θ and known corruption term support Σ, is the
cancel-then-recover approach, initially proposed in [12]. This
approach begins by projecting the measurements onto the or-
thogonal complement of the subspace spanned by the corrup-
tion term, using matrix PΣ = I−ΘΣΘ†Σ, where (·)† denotes
the Moore–Penrose pseudoinverse operator. As PΣΘΣ = 0,
the corruption term is canceled out from the measurements,
and standard recovery methods could be applied to recover
the sparse signal x from the clean measurements PΣy. In our
specific setting, the projection matrix, involved in the cance-
lation approach, acts simply by zeroing entries of y and rows
of Φ indexed by E , which turns to reject effectively saturated
measurements. Hence, the rejection approach with correct
identification and removal of effectively saturated measure-
ments is equivalent to the cancel-then-recover approach of
[11].

4. PROPOSED CONVEX OPTIMIZATION BASED
RECOVERY FOR QCS

The model in (2) incorporates a non-convex constraint on the
saturation errors. We propose to perform robust sparse re-
covery jointly with saturation error estimation using a convex
optimization approach, where the sign property is exploited to
convexify the saturation error constraint. Formally, we solve
the following optimization problem

{x̂, ŝ} ∈ argmin
x̃∈RN ,

s̃∈RS .

‖x̃‖1 s.t. ‖y −Θs̃−Φx̃‖2 ≤ ε (3a){
s̃ � 0 (3b)
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4.1. Key Underlying Virtues

The key advantage of the proposed problem formulation is
that all M cleaned measurements y − Θs̃ contribute to the
denoising constraint (3a). Moreover, s could be seen as a non-
negative E-sparse vector with a potentially high fraction of
sparsity E

S . By considering the equivalent bi-objective prob-
lem formulation of (3) with respect to the residual norm con-
straint (3a), and by fixing x̃, the solution ŝ could be inter-
preted as a Non Negative `1-regularised Least Squares (LS)
solution from pseudo-observation y − Φx̂. Fortunately, it
has been shown that Non Negative Least Squares (NNLS) is
sparsity promoting, albeit no explicit `1-norm minimization
is used, especially for high levels of sparsity [13]. Hence, ar-
tificially saturated measurements would be detected thanks to
the built-in s̃ sparsity promoting property of (3).

4.2. Theoretical Recovery Guarantee

In order to study the stability of the solution of (3), we pro-
pose the following reformulation of the problem. Let D =

[Φ Θ] ∈ RM×(N+S), w =

[
x
s

]
∈ R(N+S) and T =

[N+1, . . . , N+S]. Then, our observation model of (2) could
be recast to the Justice Pursuit (JP) model [14] that leverages
the sparsity of the signal and the corruptions, as follows

y = Dw + n = [Φ Θ]

[
x
s

]
+ n, (4)

where w is (K + E)-sparse. Consequently, the proposed op-
timization problem (3) could be reformulated as

min
w̃∈R(N+S)

‖w̃Tc‖1 s.t. ‖Dw̃ − y‖2 ≤ ε (5a){
w̃T � 0 (5b)

where the support of its solution contains the smallest num-
ber of new additions to its positive part on T . Surprisingly,
the subproblem (5a) is simply the innovative BPDN (iBPDN)
problem studied in [15], where PKS information on sparse
signals (here w) has been incorporated into BPDN.
The JP model and the iBPDN formulation provide the key
foundation to prove recovery guarantee for our proposed
method. Firstly, if Φ entries are drawn according toN (0, 1

M )
and since Θ has orthonormal columns, matrix D is shown to
satisfy the RIP condition [Theorem 1, 14]. Secondly, under
mild conditions on the RIP constant of D, and given that
||n||2 ≤ ε, the iBPDN has the `2 − `1 instance optimality
[Theorem 1, 15] meaning that:

||x̂− x||2 ≤ C0K
−1/2||x− x(K)||1 + C1ε,

whereC0 andC1 are small parameters. Motivated by these re-
sults, the stability of the proposed recovery approach is guar-
anteed, regardless of the additional convex sign constraint.

5. SIMULATION RESULTS

In this section, we demonstrate the performance gain of our
proposed convex optimization based recovery method, in
comparaison with the state-of-the-art saturation consistency
and rejection approaches of [6], in terms of recovery ef-
ficiency and robustness to saturation. We also consider the
oracle assisted rejection approach, where effectively saturated
measurements are assumed to be identified by an “oracle”, as
the reference approach for performance comparaison. Fur-
thermore, we consider oracle values for ε, ε = ‖ySc − zSc‖2
or ε = ‖yEc −zEc‖2 where applicable, for a fair comparaison
of the intrinsic performance of each method, avoiding perfor-
mance degradation due to sub-optimal tuning of parameter ε.
The simulations were conducted using the general-purpose
convex optimization package CVX [16], to implement all
the aforementioned methods. The M × N measurement
matrix Φ is generated from an i.i.d. Gaussian distribution
with mean zero and variance 1/M . The K-sparse signal x,
with support selected uniformly at random in {1, . . . , N},
is drawn from an i.i.d Gaussian distribution and then nor-
malized to have unit `2-norm. For all experiments, we set
N = 1000 and K = 20 and measure the reconstruction
performance by the Reconstruction Signal-to-Noise-Ratio
RSNR , −20 log10(‖x− x̂‖2), where x̂ is the reconstructed
signal. Results are averaged over 100 Monte Carlo trials.

In the first experiment, we consider a coarse quantiza-
tion with a bit-depth b = 2 and we vary the saturation level
g over the range [0, 0.4], under two measurement regimes
M = 200, 700. Figure 1 depicts the RSNR of all meth-
ods. Solid, dashed and dashed dot lines, follow the scale
on the left vertical axis, while dot lines are associated with
the right vertical axis. The saturation rate S

M , averaged over
1000 trials, depends not only on g and δ but also on M . In-
deed, column normalization (in expectation) of Φ imposes an
M-dependent dynamic range for the measurements. All the
curves meet as the saturation rate is effectively zero. Indeed,
in the unsaturated quantizer regime, each method reduces to
the basic BPDN method. The proposed approach and the con-
sistency approach achieve their optimal RSNR performances
at a nonzero saturation rate, which confirms the benefit of sat-
urated measurements in sparse recovery from quantized mea-
surements. The optimal operating point for each approach
represents the best tradeoff between the fraction of outlying
measurements (sparsity of the corruption term) and the pre-
cision of the rest of measurements (quantization noise level).
Only the proposed approach reaches the oracle assisted re-
jection approach performance at the same operating point for
each parameter settings. This demonstrates the efficiency of
the proposed method over the saturation consistency method,
in terms of robustness against saturation.

In the second experiment, we vary the bit-depth and re-
port the maximal RSNR performances under optimal operat-
ing conditions on g for each method, in Figure 2. The per-
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(b) M = 700

Fig. 1: RSNR versus the saturation level g, with N = 1000,
K = 20 and b = 2.
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Fig. 2: RSNR versus the bit-depth b, withN = 1000,K = 20
and M = 200, 700.

formance gain of the proposed joint estimation approach is
essentially significant under the coarse quantization regime
(b = 2).

6. CONCLUSION

We presented a robust approach to recover sparse signals from
their partially saturated QCS measurements. We capitalized
on the structure of the saturation noise originated from its par-
tial support information and its sign characterization. We for-
mulated a convex optimization based recovery method that
performs a joint saturation noise estimation and clean signal
recovery. We provided the key foundation for the theoreti-
cal recovery guarantee of the proposed method. Simulation
results confirmed its robustness against saturation compared
to the saturation consistency approach, with better recovery
SNR for coarse quantization, and same performances as the
oracle-assisted rejection approach.
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