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ABSTRACT

We optimize the jamming signal for disrupting the operation of a
MIMO radar system in order to understand the threat jamming poses
to such systems. The jamming signal optimization is formulated as a
minimax problem minimizing the maximum SINR that the receivers
can achieve, resulting in a semidefinite program for a Toeplitz jam-
ming covariance matrix or a second-order cone program for a cir-
culant approximation. In the simplest case of optimizing the av-
erage SINR of a single receiver, a waterfilling-type solution is ob-
tained. Numerical studies suggest that distributed radar systems with
waveform agility and mismatched filtering capabilities are resilient
against jamming.

Index Terms— MIMO radar, jamming, convex optimization,
waterfilling, anti-jamming, interference mitigation, mismatched fil-
tering

1. INTRODUCTION

Radars commonly need to operate in environments with hostile jam-
ming. Fully adaptive radars can change their waveforms, receive
filters, and beampatterns depending on jamming and target scenar-
ios and radar channel conditions. In order to understand the potential
threat of different jamming signals and to develop countermeasures
to such signals, we consider optimizing a jamming signal to effec-
tively disrupt the receivers. Knowing the optimal jamming signal de-
sign will help the MIMO radar receivers to protect themselves from
the worst-case jamming scenarios.

In a simple case, the jamming signal has to be designed for a
single known waveform and a particular receiver structure including
the receive filter, which is typically the matched filter. However,
the design is more demanding if multiple waveforms are launched
from the radar transmitter simultaneously, as in the case of MIMO
radars, and an unknown receive filter structure may be employed at
the victim receiver.

Optimizing the jamming signal and designing the transmitted
radar waveforms as a countermeasure to the jamming was consid-
ered in [1] from a game-theoretic perspective. In this paper, we use
the minimax criterion in the jamming signal design. Given that the
jammer does not know the exact filtering scheme the receiver is us-
ing, we take the approach of minimizing the maximum signal to jam-
ming plus noise ratio that the receiver can achieve. A very important
and broad class of receive filters, i.e. mismatched filters are consid-
ered at the MIMO radar receiver. Mismatched filters acknowledge
the fact that there are no known radar waveforms that are orthog-
onal for all time delays and Doppler shifts. Mismatched filters are
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highly effective in minimizing the output interference power while
maintaining desired autocorrelation sidelobe and cross-correlation
levels [2].

The contributions of this paper are the following. We propose a
jamming signal design such that the maximum SINR is minimized at
the victim radar receivers. The goal is to find the covariance matrix
of the optimal jamming signal, as the jamming signal is a random
process. We show that the optimal covariance matrix of the jam-
ming signal is found by solving a complex-valued, convex semidefi-
nite program. The jamming signal is assumed to be quasi-stationary
(stationary over the observation period) process in the wide sense so
the covariance matrix has a Toeplitz structure. The Toeplitz structure
of the covariance matrix and the idea of approximating large Toeplitz
matrices by circulant matrices are exploited in the optimization. If
the radar receiver characteristics are not known or cannot be esti-
mated reliably, we propose to minimize the average SINR instead
of finding a minimax solution. Performing the jamming signal op-
timization in the spectral domain, a waterfilling-type solution [3] is
obtained in a such case. Only single target that the jammer is co-
operating with is assumed, but the proposed design methods can be
easily extended for multiple targets.

The implications of the jamming signal design on the jamming
avoidance are studied in simulations. If a large number of codes are
jammed simultaneously, the off-diagonal elements of jamming co-
variance matrix become small and jamming performance approaches
that of white noise.

The rest of the paper is structured as follows. The optimal jam-
ming signal design is formulated in Section 2 and numerical results
are provided in Section 3. The concluding remarks are presented in
Section 4.

2. JAMMING SIGNAL DESIGN

In this paper, we optimize a signal for jamming a radar system that
is using mismatched filters to minimizing the output interference
power. The goal of the jamming signal design is to minimize the
SINR at the victim radar receiver. Knowing the optimal jamming
signal design will help the MIMO radar receivers to protect them-
selves from the worst-case jamming scenarios.

We consider a radar system with K transmitters and IV receivers.
The waveform transmitted from the transmitter k is denoted by a 1 x
L vector s(m), where m is the propagation delay. We assume fast-
time coding, so Doppler shift within each waveform is negligible.
The received signal can then be expressed as

K
ra(m) =Y \/02, sk(m—Tin) +vn(m), (D)

k=1

2220



2016 24th European Signal Processing Conference (EUSIPCO)

where the signal power for the of the waveform £ is afv ks Thon
is the propagation delay between transmitter k£ and receiver n, and
v, (m) is a noise and interference vector containing the jamming.

It was shown in [2] that the receiver can mitigate non-white in-
terference very effectively using mismatched filters. The interfer-
ence can be attenuated with only a small loss in the sidelobe and
cross-correlation levels, so it is sensible for the receivers to use the
mismatched filters as a countermeasure against jamming.

It is assumed that the jammer attempting to interfere with the op-
eration of the receivers knows which waveforms the transmitters are
using. A jammer could transmit a copy of the used waveform to in-
terfere with the operation of the receivers, but upon detection of the
jamming at the receiver, a waveform-agile transmitter could switch
the used waveform. The receiver would then only need to place ad-
ditional constraints for the mismatched filter in order to attenuate the
previous waveform that the jammer is still using. The same princi-
ple holds for any deterministic signal. For this reason, the jammer
should use a random signal in order to be effective against counter-
measures.

Typically, the objective of the jammer is to reduce the signal
to interference plus noise ratio (SINR) at the receiver so that target
detection and tracking are disrupted. Denote the mismatched filter
coefficient vector with a 1 x L vector wy, ,,. The SINR for the wave-
form k received at the receiver n is given by
Uz,k,nlwkH,nsk (O)|2

SINRy.,, = )

H
Wk,nRVa”"'Wh"

where R, ,, is the covariance matrix of noise plus interference, in-
cluding the jamming.

The problem with the minimization of the SINR given in (2) is
that the jammer has no knowledge of the filters wy ,, that the re-
ceivers are using. Therefore, we take the approach of minimizing
the maximum SINR that the receivers can achieve.

The filter design minimizing the interference and noise power at
the filter output can be written as a optimization problem [4]

min WHR,,,nw (3a)
stwis,(0) =1, (3b)

The solution to this problem,

R, sk (0)
Wkn = 7~ 1
" ST (0)R, Lsk(0)
is the well-known MVDR beamformer [5, 6]. Substituting (4) into
(2) yields

4

SINRy,n = 02 .nSh (0)R;, 's(0), 5)

which can be then used in the jamming signal design.

To be precise, we want to find the covariance matrix of the op-
timal jamming signal, as the jamming signal is considered to be a
random process; a deterministic jamming signal would be signif-
icantly easier to mitigate. The jamming signal is assumed to be
quasi-stationary (stationary over the observation period) process in
the wide sense so the covariance matrix has a Toeplitz structure.
Thus, optimizing the jamming signal can be formulated as finding
a positive-semidefinite (PSD) Toeplitz matrix R ; that minimizes the
maximum SINR in (5) over all transmitters k and receivers n.

We can assume without loss of generality that the jammer has
unit power. The noise and interference covariance matrix at the re-
ceiver can then be written as U?’nRj + R. ., where a?m is the
jamming signal power at the receiver n, and R, ,, contains now the

noise and interference components other than jamming. The objec-
tive function for the optimization is thus

max ok ,si (0)(0. Ry + R n) ~'s1(0). ©)

The problem of designing the jamming covariance matrix can be
expressed in the epigraph form as

min ¢ (Ta)
st oz sk (0)(07 2Ry + Ru ) 'si(0) < t,Vk,n  (7b)

where ¢ is now the maximum SINR over all £ and n. In addition, R;
has to be constrained to be a positive-semidefinite Toeplitz matrix
with diagonal elements equal to one due to the power constraint for
the jammer.

Using the Schur complement [7], we can rewrite the jamming
signal design problem as a complex-valued semidefinite program
(SDP)

min ¢ (8a)
2 .

st ”J;”I:] :kHl?OV)m "S”“f’“(O) =0, Vk,n  (8b)

(R])“ = 1, 1= 1,...,L (8C)

R; € T+ (8d)

where 7 is the set of positive-semidefinite Toeplitz matrices. Prob-
lem (8) is a convex problem, so a global optimum can be found effi-
ciently in polynomial time.

In practice, the jammer would not know o n, 0 k.n, Of Ry n,
but would have to use estimates based on the knowledge of the radar
system and its setup. For example, if the receiver locations are
known, 0, and o, i, can be estimated using signal power mea-
surements and knowledge of the target RCS profile. (Since the jam-
mer cooperating with the target, knowledge of the target RCS can
be assumed.) Then only R, , would be unknown. If intelligence
of the receiver hardware is available, the jammer might, for ex-
ample, have knowledge of typical noise power at the receiver. In
the absence of better information, the jammer may have to assume
0jn = Os,k,n = 1 and white noise with a low power.

The number of (L + 1) x (L + 1) positive-semidefinite matrix
variables needed in the optimization problem (8) is K N. This might
lead to a computational complexity that is too high for a practical im-
plementation. One way to reduce the complexity of the optimization
is assuming that 0 », 0 k,n, and R, , are equal for all receivers,
which would reduce the complexity by a factor of N. This would
be the case when the receiver locations are unknown. However, the
computational complexity might still be prohibitively high, particu-
larly if L is large.

Another way to reduce the computational complexity signifi-
cantly is to assume that the covariance matrices are circulant. If
the dimension of the waveform vector is large, the covariance matrix
R. is a large Toeplitz matrix that can be approximated well with a
circulant matrix. Furthermore, if the vector s (0) is zero-padded, it
has the finite-term structure defined in [8]. In order to prove the con-
vergence of the result with a circulant R; to the Toeplitz case based
on the results of [8], however, we would first need to solve the SDP
in (8) to obtain the Toeplitz R ; for the particular setup.

Assuming the circulant covariance matrices and using the fact
that any circulant matrix can be diagonalized using a discrete Fourier
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transform (DFT) matrix, the SINR at the receiver can be written as
+ Rv n)_ ! Sk (0)

AFH +FE,F7) 7 's,(0)

'Fs, (0) 9

SINRkn = Jsknsk ( )(
:Ueknsk( )(

.7
2
.7
Us,k,nsk( ) (UJ, A+h‘n)
(Sk

G
2
_Us,k,nz )\ +£n1

i=1 J:n

where F is the L x L DFT matrix, A is the diagonal matrix of eigen-
values A; of R;, 2 is the diagonal matrix of eigenvalues &, ; of
R », and § is the DFT of s;(0). The optimization is thus done in
the spectral domain.

Using (9), the optimization of the jamming covariance matrix
can be written as

min ¢ (10a)
L o2l (Br)il?

o, SO ZoknlSRIL 10b
D e (o
L
d =L (10¢c)
i=1
A >0, (10d)

where (10c) results from the main diagonal of R, consisting of
ones and (10d) from the positive-semidefiniteness requirement. This
problem can be formulated as a second-order cone program, which is
convex. The computational complexity is considerably smaller than
for the SDP problem (8). Naturally, jamming is likely to be less effi-
cient using the circulant covariance matrix compared to the optimal
Toeplitz matrix due to the smaller number of degrees of freedom.

If many of the receiver characteristics cannot be estimated, it
might be more sensible to minimize the average SINR instead of the
maximum. This also leads to further simplification of the optimiza-
tion problem. Assuming circulant R ;, white noise with a variance
o2, as well as equal signal, jamming, and noise powers at all the
receivers (or alternatively, only a single receiver), the average SINR
can be written as

2 = \.|2 L 2
s2k:|(sk) il _ Z de ’ (11)
Aitor  Huitp

where u? = \;, p = 03/072- is the inverse of the jamming to noise
ratio, and

1 o o?
_ s,k =\ |2
di = KZ el ORI (12)
k=1 ~J
The minimization of the average SINR can thus be written as
L
2
min s.t. u; = L, 13
Z p +u ; (13)

where uf = \; will guarantee a positive-semidefinite R,..
The Lagrangian of (13) is

L

2
=25 ﬁu(Zm—L) (14)

Setting the derivative of £ with respect to uy equal to zero yields
2

_d
(b +uz)?

—2up 4+ 2uur =0 (15)

. . . 1/2 o
so we obtain five solutions uj, = 0, +(+u "/ 2dx —p) /2 Since u2
must be nonnegative and it appears in the denominator, a minimum
is obtained with

—1/2; _ \1/2 —1/2
uk:{i(u de —p) ', pT e > p (16)

0, otherwise.

Since the actual eigenvalue is ux squared, the negative solution can
be ignored. Therefore, a general waterfilling solution [3] with single
water level, Ay = max (0, pfl/Qdk — p), is obtained.

It is necessary to find the correct water level, which corresponds
to identifying those \; that are equal to zero. Sorting the coefficients
d; in ascending order, the eigenvalues \; will also be in ascending
order. There are then L possible choices for the water level. Select-
ing the k smallest eigenvalues to be zero, the constraint equation of
(13) yields

L
_ _ L+ (L—k
S wPdi-p)=L=p 1/2=#. (17)
i=k+1 Zi:k+l di

If then ™ /2dy41 < p, k was chosen to be too small. Otherwise,
k can be increased. Therefore, it is possible to use binary search to
find the value of k that gives the correct water level. The complexity
of sorting d;’s is O(L log, L), the complexity of the binary search
is O(log2L), and finally, checking the validity of the water level is
an operation with a complexity of O(L). The total complexity of the
algorithm is thus O(L log, L).

3. NUMERICAL EXAMPLES

Numerical examples of a jamming signal optimization and counter-
measures are provided in this section.

The jamming signal was optimized to minimize the signal to
jamming plus noise ratio (SJNR) of a MIMO radar system employ-
ing the Oppermann codes. The Oppermann codes are given by [9]

: a, b c
sip(m) = (—l)km exp (W) , (18)

where j is the imaginary unit, NV is the sequence length, k is the
sequence number, m is the symbol index, and a, b, as well as c are
design parameters.

The transmitted waveforms in this example were the codes with
the parameter values N = 61, k = 1,...,10,a = 2, b = 3, and
c = 3. The JNR was assumed to be 20 dB at the receiver and un-
known to the jammer, whereas SNR was equal to 5 dB. The jamming
signal was optimized to target one, two, or four first sequences in the
Oppermann code set.

Table 1 shows the matched filter and the MVDR SINR at the
filter output for various jamming signal designs in dB, when the first
code sequence was targeted with the jamming. The MVDR can eas-
ily attenuate the jamming designed against the matched filter. When
the jamming is designed to minimize the SINR of the MVDR, the
MVDR is naturally ineffective. However, the difference to jamming
employing white noise is only a few dB. Having more degrees of
freedom, the Toeplitz covariance matrix is typically few dB better
that the circulant one.

SINR of the MVDR filter output for the different codes is shown
in Fig. 1 for both a Toeplitz and a circulant covariance matrix. As a
Toeplitz matrix has more degrees of freedom than a circulant matrix,
lower SJNR is achieved with the Toeplitz solution. It can be seen
that targeting specific sequence leads to low SINR for that sequence,
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Table 1. Filter Output SINR

Circ. vs. Toepl. vs. Circ. vs. Toepl. vs. White
Matched Matched MVDR MVDR Noise

Matched -21.0 -21.7 -17.0 -18.6  -15.0
MVDR 4.7 4.7 -16.2 -182  -15.0

Comparison of matched filter and MVDR output SINR with
various jamming signal designs in dB. The MVDR can easily
mitigate the jamming designed against matched filter, but not
the worst case jamming signal.

Toeplitz Jamming Covariance Matrix
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Fig. 1. Signal to jamming plus noise ratio of MVDR output for the
receiver filters when the jamming covariance matrix is (a) Toeplitz
and (b) circulant. The Toeplitz matrix decreases SINR more due to
more degrees of freedom compared to the circulant solution. The
jamming performance approaches that of white noise as the number
of sequences increases.

whereas the jamming does not affect the other sequence as much. As
the number of targeted codes increases, the jamming performance
approaches that of white noise.

The reason for this can be seen in Fig. 2, which shows Frobe-
nius norm of the difference of the trace-normalized circulant jam-
ming signal covariance matrix R; and an L X L identity matrix,
ie. H ﬁRj - %IHF. When R; is a scaled identity matrix, the
norm is equal to zero. As the number of sequences being jammed
increases, the covariance matrix resembles more and more the co-
variance matrix of uncorrelated noise. This means that the jamming
performance will also approach that of uncorrelated noise.

The provided examples demonstrated that mismatched filtering
can be effectively used to suppress jamming. As a further coun-
termeasure against jamming, the transmitters can frequently switch
the waveforms that they transmit. This forces the jammer to target

Difference of Jamming Covariance and Identity Matrix

0.015 |- _

0.010 [ _

Frobenius Norm

0.005 |- N

\ \ \ \ \ \ \
0 5 10 15 20 25 30

Number of Sequences

Fig. 2. Frobenius norm of the difference of the trace-normalized
optimal jamming signal covariance matrix and an identity matrix.
As the number of sequences being jammed increases, the covari-
ance matrix resembles more and more a scaled identity matrix, so
the jamming signal becomes temporally white.

multiple codes limiting the effectiveness of jamming. Using such a
countermeasure requires a large set of suitable waveforms, however.
Disrupting the operation of a distributed MIMO radar would likely
require spoofing-type attacks in which target-like signals are created
to mislead the radar instead of jamming with noise-like signals.

4. CONCLUSIONS

In this paper, the jamming signal of a radar jammer was optimized to
disrupt the operation of a waveform-agile radar with possibly many
transmitters and receivers. Since the receivers can use mismatched
filters as a countermeasure against jamming, the minimax approach
was taken so that jamming signal minimizes the largest signal to
interference plus noise ratio the receivers can achieve.

In order to reduce the receivers’ capability to suppress the jam-
ming signal, a non-deterministic signal that is a random process
should be used. Assuming quasi-stationarity, the covariance matrix
of the signal has a Toeplitz structure. The optimization of Toeplitz
covariance matrix to minimize the maximum receiver SINR was for-
mulated as a convex semidefinite program that can be solved in poly-
nomial time. It was shown that the computational complexity of the
optimization can be reduced by assuming the covariance matrices to
be circulant. This decreases the effectiveness of the jamming com-
pared to the optimal Toeplitz structure. Furthermore, in case of a
single receiver or equal receiver characteristics, it was shown that
the circulant jamming signal covariance matrix minimizing the aver-
age SINR can be obtained with a fast, water-filling algorithm.

Distributed radar systems in which the transmitters and receivers
are in different locations are resilient against jamming, as the jammer
does not typically know the positions of the receivers and thus, can-
not direct energy towards them. It was demonstrated that by the pro-
posed jamming signal optimization, the jammer is able to improve
the effectiveness of the jamming signal. However, if the receiver
uses a mismatched filter with a performance close to that of MVDR,
the effectiveness of the optimized jamming signal is significantly
diminished. Furthermore, as the number of transmitted sequences
increase, the jamming performance approaches the performance of
white noise as the transmitted waveforms are typically designed have
as low correlation as possible. As a countermeasure for jamming, a
waveform-agile transmitter can switch the sequence being transmit-
ted frequently to minimize the impact of jamming. As the receiver
can estimate the direction of the jammer, that information could be
used to suppress the jamming further.
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