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Abstract—The adaptive Lasso (Least Absolute Shrinkage and
Selection Operator) obtains oracle variable selection property by
using cleverly chosen adaptive weights for regression coefficients
in the `1-penalty. In this paper, in the spirit of M -estimation of
regression, we propose a class of adaptive M -Lasso estimates of
regression and scale as solutions to generalized zero subgradient
equations. The defining estimating equations depend on a differ-
entiable convex loss function and choosing the LS-loss function
yields the standard adaptive Lasso estimate and the associated
scale statistic. An efficient algorithm, a generalization of the
cyclic coordinate descent algorithm, is developed for computing
the proposed M -Lasso estimates. We also propose adaptive M -
Lasso estimate of regression with preliminary scale estimate that
uses a highly-robust bounded loss function. A unique feature of
the paper is that we consider complex-valued measurements and
regression parameter. Consistent variable selection property of
the adaptive M -Lasso estimates are illustrated with a simulation
study.

Index Terms—Adaptive Lasso, M -estimation, penalized regres-
sion, sparsity, variable selection

I. INTRODUCTION

We consider the complex-valued linear model y = �� +
", where � is a known n ⇥ p complex-valued measurement
matrix (or matrix of predictors), � = (�1, . . . ,�p)

> is the
unknown vector of complex-valued regression coefficients (or
system parameters) and " 2 Cn denotes the additive noise. For
ease of exposition, we consider the centered linear model (i.e.,
we assume that the intercept is equal to zero). The primary
interest is to estimate the unknown parameter � given y 2 Cn

and � 2 Cn⇥p. When the linear system is underdetermined
(p > n) or p ⇡ n, the least squares estimate (LSE) �̂LS =

argmin�
1
2ky ���

�

�

2

2
does not have a unique solution or is

subject to a very high variance. Furthermore, for large number
of predictors, one wish to find a sparse solution, meaning that
�̂

j

= 0 for most j 2 {1, . . . , p}, so that only the predictors that
exhibit the strongest effects are selected. A common approach
in the above cases it to use penalized/regularized regression
with sparsity enforcing `1-penalty as in Lasso [1]. The Lasso,
however, inherits the non-robustness (sensitivity to outliers)
of LSE as well as its inefficiency when the noise follows a
heavy-tailed non-Gaussian distribution.

The adaptive Lasso [2] uses adaptive weights for penalizing
different coefficients in the `1-penalty. The weighted Lasso
solves a weighted `1-penalized LS regression problem,

minimize
�2Cp

n1

2

�

�y ���
�

�

2

2
+ �kw � �k1

o

(1)

where � > 0 is the shrinkage (penalty) parameter, chosen
by the user, w = (w1, . . . , wp

)> is a vector of non-negative
weights, and � is the Hadamard product, i.e., the component-
wise product of two vectors. Thus kw � �k1 =

P

p

j=1 wj

|�
j

|.
Standard Lasso is obtained when w

j

⌘ 1. Adaptive Lasso
was proposed in the real-valued case, but it can be extended
to complex-valued case in straightforward manner. Adaptive
Lasso is obtained when � = �

n

depends on the sample
size n and the weights are data dependent, defined as ŵ

j

=
1/|�̂init,j |� for � > 0, where �̂init 2 Cp is a root-n-consistent
initial estimator to �. It was shown in [2] that if �

n

/

p
n! 0

and �
n

n

(��1)/2 !1, then the adaptive Lasso estimate enjoys
oracle properties (consistent variable selection and the same
asymptotic normal distribution as the LSE that knows the true
model). It should be noted that the root-n consistency of �̂init

can be relaxed, see [2] for discussion. In this paper, we use
� = 1 and the standard (w

j

⌘ 1) Lasso estimate �̂
�

as �̂init

as in [3].
The M -estimates of regression [4] are defined as solu-

tions to generalized normal equations that depend on a score
function which is the first derivative of the loss function
⇢(x),  (x) = ⇢

0(x). Commonly used loss functions are
the standard LS loss ⇢(x) = |x|2 or the robust Huber’s
loss function. Most robust loss and score functions require
a preliminary estimate of the scale of the error distribution.
In this paper, we propose a class of weighted/adaptive Lasso
estimates following the spirit of M -estimation; namely, we
define the weighted M -Lasso estimates of regression and scale
as solutions to generalized zero subgradient equations that also
depend on a score function. When the associated loss function
is the LS-loss, these equations are a sufficient and necessary
condition of a solution to the weighted Lasso problem (1).
Furthermore, we develop a simple and efficient algorithm to
compute the weighted M -Lasso estimate. This algorithm is
a natural generalization of cyclic coordinate descent (CCD)
algorithm [5] which is the current state-of-the-art method for
computing the Lasso solution (1).

The paper is organized as follows. Robust loss functions
and their properties are outlined in Section II. As examples
we consider the Huber’s loss and highly-robust (non-convex)
Tukey’s loss and introduce the notion of pseudo-residual
vector. In Section III, we define the M -Lasso estimates of re-
gression and scale and develop the generalized CCD algorithm
for computing the solution. Section IV provides simulation
studies to illustrate the model selection abilities and prediction
accuracy of the proposed method in various noise conditions.
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Notations. The vector space Cn is equipped with the usual
Hermitian inner product, ha,bi = aHb, where (·)H = [(·)⇤]>
denotes the Hermitian (complex conjugate) transpose. This
induces the conventional (Hermitian) `2-norm kak2 =

p
aHa.

The `1-norm is the defined as kak1 =
P

n

i=1 |ai|, where
|a| =

p
a

⇤
a =

p

a

2
R

+ a

2
I

denotes the modulus of a complex
number a = a

R

+ |a

I

. For a matrix A 2 Cn⇥p, we denote
by a

i

2 Cn its i

th column vector and a
i· 2 Cp denotes

the Hermitian transpose of its i

th row vector. Hence, we
may write the measurement matrix � 2 Cn⇥p as � =
�

�1 · · · �
p

�

=
�

�1· · · · �
n·
�H.

II. ROBUST LOSS FUNCTIONS AND PSEUDO-RESIDUALS

Suppose that the noise terms "
i

are i.i.d. continuous random
variables from a circular distribution [6] with p.d.f. f(e) =
(1/�)f0(e/�), where f0(e) denotes the standard form of the
density and � > 0 is the scale parameter. If � is known, then
an M -estimator �̂ solves

�
n

X

i=1

�
i· 

✓

y

i

� �H
i·�̂

�

◆

= 0 (2)

where  : C ! C, called the score function, is a complex
conjugate derivative [7] of the loss function ⇢ : C ! R+

0 .
As in [8], a function ⇢ : C ! R+

0 is called a loss function
if it is circularly symmetric (i.e., ⇢(e|✓x) = ⇢(x)8 ✓ 2 R),
R-differentiable, increasing in |x| > 0 and satisfies ⇢(0) = 0.
Due to circularity assumption, ⇢(x) = ⇢0(|x|) for some ⇢0 :
R+

0 ! R+
0 and hence the score function becomes

 (x) =
@

@x

⇤ ⇢(x) =
1

2

✓

@⇢

@x

R

+ |

@⇢

@x

I

◆

=
1

2
⇢

0
0(|x|)sign(x),

where

sign(x) =

(

x/|x|, for x 6= 0

0, for x = 0

is the complex signum function and ⇢

0
0 denotes the real

derivative of the real-valued function ⇢0.
An objective function approach for M -estimation, on the

other hand, defines an M -estimate of regression (again as-
suming � is known) as a solution to an optimization program

minimize
�2Cp

n

X

i=1

⇢

✓

y

i

� �H
i·�

�

◆

. (3)

Naturally, if ⇢ is a convex loss function, then all solu-
tions of (2) are solutions of (3). The maximum likelihood
(ML-)estimate of regression is found by solving (3) with
⇢(x) = � ln f0(x) or equivalently, solving (2) with  (x) =
� @

@x

⇤ ln f0(x).
In the complex-valued case, Huber’s [4] loss function is

defined as [8]:

⇢H,c

(x) =

(

|x|2, for |x|  c

2c|x|� c

2
, for |x| > c,

(4)

where c is a user-defined threshold that influences the degree of
robustness and efficiency of the method. Huber’s loss function

Huber’s loss ⇢H,c

(x) Tukey’s loss ⇢T,c
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Fig. 1. Surface plots of the robust loss functions

is a hybrid of `2 and `1 loss functions ⇢(x) = |x|2 and
⇢(x) = |x|, respectively, using `2-loss for relatively small
errors and `1-loss for relatively large errors. Moreover, it is
convex. Huber’s score function becomes

 H,c

(x) =

(

x, for |x|  c

c sign(x), for |x| > c

.

We use c = 1.215 as our default choice which gives approxi-
mate 95% efficiency at the complex Gaussian noise.

Tukey biweight function is another commonly used loss
function [4]. We define it for complex-values measurements
as

⇢T,c

(x) = (c2/3)min
n

1, 1�
�

1� (|x|/c)2
�3
o

.

Tukey’s loss function is bounded, which makes it very robust
to large outliers. As a consequence, it is also non-convex. The
respective score function is

 T,c

(x) =

8

<

:

x

⇣

1� (|x|/c)2
⌘2

for |x|  c

0, for |x| > c

.

Thus large residuals r

i

= y

i

� �H
i·� are completely rejected,

i.e., they have zero weight in (2). For Tukey’s loss function,
we use c = 3.0 as our default choice which gives approximate
85% efficiency at the complex Gaussian noise. Huber’s and
Tukey’s loss functions are depicted in Figure 1.

Let rrr ⌘ r

r

r(�) = y��� denote a residual vector for some
candidate � 2 Cp. The loss function then defines a pseudo-
residual,

r

r

r

 

⌘ r

r

r

 

(�,�) =  

✓

y ���

�

◆

�, (5)

where  -function in (5) acts coordinate-wise to vector r

r

r/�,
so [ (rrr/�)]

i

=  (r
i

/�). Note that if ⇢(·) is the conventional
LS-loss, ⇢(x) = |x|2, then  (x) = x, and r

r

r

 

is equal to the
residual vector, rrr

 

= y � �� = r

r

r. The multiplier � in (5)
is essential in bringing the residuals back to the original scale
of the data. Using the above notation, we may write (2) more
compactly as ��H

j

r

r

r

 

(�̂,�) = 0 for j = 1, . . . , p, which will
be elemental in our developments later on.

The discussion above assumes � is known. In practise, �
is unknown and utilizing robust loss functions above requires
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a preliminary robust scale estimate �̂. Obtaining an accurate
estimate of scale is a challenging problem in sparse regression
scenario and therefore we develop a weighted/adaptive M -
Lasso method in which regression and scale parameters are
estimated jointly.

III. WEIGHTED M -LASSO ESTIMATION

A. Definition and properties

Note that the LS criterion function J

`2(�) =
1
2ky���k22

in (1) is convex (in fact strictly convex if n > p) and R-
differentiable but the `1-penalty function kw � �k1 is not R-
differentiable at a point where at least one coordinate �

j

is zero
(and w

j

is nonzero). However, we can resort to generalization
of notion of gradient applicable for convex functions, called
the subdifferential [9]. For a complex function f : Cp ! R
we can define subdifferential at a point � as

@f(�) = {z 2 Cp : f(�0) � f(�) + 2Re(hz,�0 � �i)
for all �0 2 Cp}.

Any element z 2 @f(�) is then called a subgradient of f at
�. The subdifferential of the modulus |�

j

| is

@|�
j

| =
(

1
2 sign(�j), for �

j

6= 0
1
2s for �

j

= 0

where s is some complex number verifying |s|  1. Thus
subdifferential of |�

j

| is the usual complex conjugate deriva-
tive when �

j

6= 0, i.e., @|�
j

| = @

@�

⇤
j
|�

j

| for �
j

6= 0. Then a
necessary and sufficient condition for a solution to the Lasso
problem (1) is that @(J

`2(�) + �kw � �k1) 2 0 which gives
zero subgradient weighted Lasso equations

��H
j

�

y ���̂
�

+ �w

j

ŝ

j

= 0 for j = 1, . . . , p (6)

where ŝ

j

is 2 times an element of the subdifferential of
|�

j

| evaluated at �̂
j

, i.e., equal to sign(�̂
j

) if �̂
j

6= 0 and
some complex number lying inside the unit complex circle
otherwise. If �̂

�

denotes a solution to weighted Lasso solution
problem (1), then a natural estimate of the scale � is

�̂

2
�

=
1

n

n

X

i=1

�

�

y

i

� �H
i·�̂�

�

�

2
=

1

n

kr̂rrk22, (7)

where r̂

r

r = y���̂
�

denote the residual vector at the solution.

Definition 1. Let w and � denote a vector of non-negative

weights and penalty parameter, respectively. Let ⇢(x) =
⇢0(|x|) denote a convex loss function. The weighted M -Lasso
estimates (�̂

�

, �̂

�

) 2 Cp ⇥ R+
are defined as solutions to

generalized (zero subgradient) Lasso estimating equations,

��H
j

r

r

r

 

(�̂, �̂) + �w

j

ŝ

j

= 0 for j = 1, . . . , p (8)

↵n�
n

X

i=1

�

 

|y
i

� �H
i·�̂|

�̂

!

= 0 (9)

where ↵ > 0 is a fixed scaling factor and the function � :
R+

0 ! R+
0 is defined as

�(t) = ⇢

0
0(t)t� ⇢0(t). (10)

Equations (8) and (9) are referred to as weighted Lasso M -
estimating equations.

Our approach to robust Lasso is different compared to
earlier approaches in the literature which have followed the
objective function approach to M -estimation by adding an `1-
penalty to (3). We follow the more general estimating equation
approach of M -estimation stated in (2).

Some remarks of this definition are in order. First, if one
uses the LS-loss ⇢(x) = |x|2, then r̂

r

r

 

= r̂

r

r and (8) reduces
to (6). Furthermore, since ⇢0(t) = t

2 and ⇢

0
0(t) = 2t, the �-

function in (10) is �(t) = t

2, and (9) reduces to (7) for ↵ = 1.
In other words, for LS-loss, the weighted M -Lasso solution
(�̂

�

, �̂

�

) is the standard Lasso estimate �̂
�

solving (1) and
the standard scale statistic given by (7). Second, if � = 0 (so
no penalization) and n > p, then the solution to weighted M -
Lasso estimating equations (8) and (9) is the unique solution
to the convex optimization problem

argmin
�,�

⇢

Q(�,�) = ↵n� +

n

X

i=1

⇢

✓

y

i

� �H
i·�

�

◆

�

�

. (11)

The objective function Q(�,�) was proposed by Huber [4]
in the real-valued case for joint M -estimation of regression
and scale. Lasso penalized Huber’s criterion was considered
in [10] and `0-penalization in the complex-valued case in [8].

To simplify notation we write the pseudo-residual vector
r

r

r

 

(�̂, �̂) in (8) as r̂

r

r

 

. Then note that (8) can be written
compactly as h�

j

, r̂

r

r

 

i = �w

j

ŝ for j = 1, . . . , p. Thus, after
taking modulus of both sides, we obtain

|h�
j

, r̂

r

r

 

i| = �w

j

, if �̂
j

6= 0 (12)

|h�
j

, r̂

r

r

 

i|  �w
j

, if �̂
j

= 0. (13)

In other words, whenever a component, say �̂
j

, of �̂ becomes
non-zero, the corresponding absolute correlation between the
pseudo-residual r̂

r

r

 

and the column �
j

of �, |h�
j

, r̂

r

r

 

i|,
meets the boundary �w

j

in magnitude. This is a well-known
property of Lasso; see e.g., [11] or [12] in the complex-
valued case. This property is then fulfilled by weighted M -
Lasso estimates by definition. In the real-valued case, [10]
considered minimization of (non-weighted) penalized Huber’s
criterion Q

�

(�,�) = Q(�,�) + �k�k1. The solution of
min�,�

Q

�

(�,�), however, is different from solutions to (8)-
(9). This can be verified by noting that the zero subgradient
equation @�Q�

(�,�) = 0 is different from (8) for w

j

⌘ 1.
This also means that solution for weighted penalized Huber’s
criterion based on LS-loss function is not the weighted Lasso
solution (1). This is somewhat counterintuitive. The equiva-
lence with weighted Lasso solution to (1) and weighted M -
Lasso for LS-loss, however, holds.

The scaling factor ↵ in (9) is chosen so that the obtained
scale estimate �̂ is Fisher-consistent for the unknown scale
� when {"

i

}n
i=1

iid⇠ CN (0,�2). Due to (9), we choose it as
↵ = E[�(")], when " ⇠ CN (0, 1). For Huber’s function (4)

2016 24th European Signal Processing Conference (EUSIPCO)

2193



the �-function in (10) becomes

�H,c

(|x|) = | H,c

(x)|2 =

(

|x|2, for |x|  c

c

2
, for |x| > c

. (14)

In this case the estimating equation (9) can be written as

n

X

i=1

�

�

�

�

�

 H,c

 

y

i

� �H
i·�̂

�̂

!

�̂

�

�

�

�

�

2

= �̂

2
n↵, �̂

2 =
1

n↵

�

�

r̂

r

r

 

�

�

2

2
,

where r̂rr
 

= r

r

r

 

(�̂, �̂). The consistency factor ↵ = ↵(c) can be
easily solved in closed-form by elementary calculus as ↵ =
c

2(1 � F

�

2
2
(2c2)) + F

�

2
4
(2c2), where F

�

2
k

denotes the c.d.f.
of �2

k

-distribution. Note that threshold parameter c determines
the value of ↵.

B. Algorithm

Next we develop a simple and efficient algorithm, gen-
eralized cyclic coordinate descent (CCD) [5] algorithm, for
computing the weighted M -Lasso estimates. Recall that CCD
algorithm repeatedly cycles through the predictors updating
one coordinate �

j

at a time (j = 1, . . . , p) while keeping
others fixed at their current iterate values. At jth step, the
update for �̂

j

is obtained by soft-thresholding a conventional
coordinate descent update �̂

j

+ h�
j

, r̂

r

ri, where r̂

r

r denotes the
residual vector r̂rr = r

r

r(�̂) at current estimate �̂. In the complex-
valued case, it is easy to verify (proof omitted) that

soft
�

(y) = argmin
�2C

n1

2
|y � �|2 + �|�|

o

= sign(y)(|y|� �)+

is the complex soft-thresholding operator, where (t)+ =
max(t, 0). For weighted M -Lasso, similar updates are per-
formed but r̂

r

r is replaced by pseudo-residual vector r̂

r

r

 

and
the update for scale is calculated prior to cycling through the
coefficients.

The Generalized CCD (GCCD) algorithm for computing
the weighted M -Lasso solutions proceeds as follows:

1) Update the scale �̂2  �̂

2

↵n

n

X

i=1

�

✓

|y
i

� �H
i·�̂|

�̂

◆

2) For j = 1, . . . , p do

a) Update the pseudoresidual: r̂rr
 

  

✓

y ���̂

�̂

◆

�̂

b) Update the coefficient: �̂
j

 soft
�wj

�

�̂

j

+h�
j

, r̂

r

r

 

i
�

3) Repeat Steps 1 and 2 until convergence

We define adaptive M -Lasso estimates (�̂
ad

�

, �̂

ad

�

) simply as
a weighted M -Lasso solution using data dependent weights
ŵ

j

-s and penalty �

n

as in [2]. They are computed using a
two-stage procedure:

A1 Compute (non-weighted, so w

j

⌘ 1) M -Lasso estimate
(�̂

�

⇤ , �̂
�

?) where �

? denotes the optimal penalty pa-
rameter chosen using the Bayesian information criterion
(BIC) over a grid of � values.

A2 Compute weights ŵ

j

= 1/|�̂init,j |, where �̂init = �̂
�

?

and solve (�̂
ad

�

, �̂

ad

�

) as weighted M -Lasso solutions
using ŵ = (ŵ1, . . . , ŵn

)> and a penalty parameter �
n

.

In the simulation studies, we use �

n

= log(log(n)) which
verifies condition on �

n

in [2, Th. 2]. Note that we can omit
the variables for which �̂init,j = 0 and simply set �̂ad

�,j

= 0.
BIC value is determined as �? = argmin

�2[�]

�

2n ln �̂
�

+
df(�) · lnn

 

where df(�) is the number of nonzero elements
in �̂

�

and [�] denotes a grid of � values.

C. Adaptive M -Lasso with preliminary scale

If an accurate robust preliminary scale estimate �̂0 is
available, one may drop the assumption of convexity of the
loss function in Definition 1 to allow for bounded (highly-
robust) loss functions. Thus we define a weighted M -Lasso
estimate �̂ = �̂

�

with preliminary scale �̂0 as a solution to

��H
j

r

r

r

 

(�̂, �̂0) + �w

j

ŝ

j

= 0 for j = 1, . . . , p. (15)

We then use Tukey’s loss function ⇢T,c

(x) and compute the
solution using the following three-stage procedure. First stage
is as Step A1 for adaptive M -Lasso, where we utilise Huber’s
loss function in finding (�̂

�

⇤ , �̂
�

?). At second stage, one
computes preliminary scale estimate as the median absolute
deviation (MAD) of the residuals based on the Huber M -Lasso
fit �̂

�

? computed earlier, so

�̂0 = 1.20112 ·median
�

�

�

y

i

� �H
i·�̂�?

�

�

 

n

i=1
.

The scaling constant 1.20112 is used to obtain consistent scale
estimate in complex Gaussian noise. At the last stage, we
compute adaptive weights ŵ

j

= 1/|�̂init,j |, where �̂init = �̂
�

?

and find the weighted M -Lasso solution with preliminary
scale �̂0 using Tukey’s loss function, ŵ

j

-s as weights and
penalty �

n

. When computing the solution using the GCCD
algorithm it is important to give �̂

�

? as an initial warm start
for the algorithm. Due to the good warm start, the algorithm
appears to converge in practise despite of non-convexity of
Tukey’s loss function. Note that Step 1 (scale update) of
GCCD algorithm is now omitted since the scale �̂0 is not
estimated.

IV. SIMULATIONS

We set p = 23 = 8 and n = 27 = 128. The coefficient
vector � has |�1| = 1.0, |�2| = 1.5, |�3| = 2.0 and |�

j

| = 0

for 4  j  p, and Arg(�
j

)
iid⇠ Unif(0, 2⇡), j = 1, . . . , p

for each MC trial. The measurement vector y is generated
according to the linear model where x

ij

iid⇠ CN (0, 1) and the
error terms "

i

are i.i.d. from either the complex circular Gaus-
sian distribution CN (0,�2) or the circular Cauchy distribution
Ct1(0,�), i.e., circular complex t-distribution [6] with ⌫ = 1
degrees of freedom. In the former case, the scale parameter
� is the variance and in the latter case (as the variance
does not exist) the population MAD, � = Med

F

(|"
i

|). The
support of � is the index set of its non-zero elements, i.e.,
� = supp(�) = {j 2 {1, . . . , p} : �

j

6= 0} and
�̂ = supp(�̂) denotes the support of �̂. We consider the
cases � = 0.5 and � = 2 which yield signal-to-noise ratio,
SNR = 20 log10(avej2�|�j |/�) = 12 dB and SNR = 0 dB,
respectively.
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To assess the model selection abilities of the estimators, we
calculate the correct model selection rate, CMS(�̂) = I

�

� =

�̂) and the overfitting rate, OF(�̂) = I(� ⇢ �̂), where I(·)
denotes the indicator function. In the latter case, all the non-
zero coefficients and at least one zero coefficient is selected.
The underfitting rate, UF(�̂) = ¬(CMS(�̂)_OF(�̂)), means
that at least one significant predictor is excluded from the
model. This is the least wanted scenario since adaptive Lasso
can not improve upon the CMS rate of an underfitting initial
estimate �̂init. To measure the degree of overfit/underfit, we
compute the (conditional) number of false positives/negatives,
FP(�̂) = #(�̂

j

6= 0 ^ �

j

= 0) conditioned that OF(�̂) = 1
and FN(�̂) = #(�̂

j

= 0 ^ �
j

6= 0) conditioned that UF(�̂) =
1. The prediction accuracy is measured via prediction error,

PE(�̂) =

8

<

:

⇣

1
n

P

n

i=1

�

�

ỹ

i

� �̃
H

i·�̂
�

�

2
⌘1/2

"

i

⇠ CN (0,�2)

median
�

�

�

ỹ

i

� �̃
H

i·�̂
�

�

 

n

i=1
"

i

⇠ Ct1(0,�)

where an additional test data set (ỹ, �̃) of same sample size
n is generated from the respective sampling schemes for each
MC trial. Note that median absolute prediction error (MeAPE)
is used for Cauchy noise since Cauchy distribution does not
have finite variance. The above performance measures for the
oracle estimator, which uses the true coefficient vector �, is
also given as a point of reference for the evaluated methods.
All measures are computed as averages over 1000 MC trials.

Methods included in our study are, Las: standard (w
j

⌘ 1)
Lasso using BIC for penalty parameter selection, Hub: stan-
dard (w

j

⌘ 1) M -Lasso estimate of regression and scale
using Huber’s loss and BIC, adLas: adaptive Lasso using Las
as initial estimate �̂init, Hub: adaptive M -Lasso estimate of
of regression and scale using Hub as initial estimate �̂init,
adTuk: adaptive M -Lasso estimate with preliminary scale �̂0
(that uses Tukey’s loss function and Hub as �̂init as explained
in Section III-C).

Table 1 reports the model selection performance measures
for Gaussian (upper table) and Cauchy (lower table) noise. In
both medium SNR (� = 0.5) and low SNR (� = 2) Gaussian
cases, Las and Hub exhibit very similar performance. This
is even more apparent when inspecting the prediction errors
tabulated in Table II. In other words, using robust M -Lasso
with Huber’s loss in Gaussian noise leads to marginal loss
in performance. In medium SNR Gaussian noise, all adaptive
methods have oracle performance (full 100% CMS rates). In
low SNR Gaussian noise, however, only Tuk maintains full
100% CMS rate, whereas CMS rates of Las and Hub drop
down slightly to 98% and 99%, respectively. This illustrates
that Tuk estimator based on bounded loss function can be
useful even in Gaussian noise with low SNR. In heavy-tailed
Cauchy noise, the performance of the non-robust Las and
adLas completely collapse as expected. For example, in low
SNR Cauchy noise, Las does underfitting in 99% of MC
trials. Furthermore, FN number reveals that all zeros (�̂ = 0)
is the most commonly selected model. The robust M -Lasso
methods, however, maintain excellent performance. In medium
SNR Cauchy errors, both adHub and adTuk achieve oracle

� = 0.5 � = 2.0
Method CM OF FP FN CM OF FP FN
Oracle 100 0 0 0 100 0 0
Las 70 30 1.31 0 71 29 1.31 0
Hub 68 32 1.46 0 67 33 1.47 0
adLas 100 0 0 0 98 2 1.06 0
adHub 100 0 0 0 99 1 1.08 0
adTuk 100 0 0 0 100 0 0 0
Oracle 100 0 0 0 100 0 0 0
Las 33 12 1.34 2.61 1 0 1.67 2.94
Hub 29 71 1.92 0 31 68 1.81 1.00
adLas 37 8 1.17 2.61 1 0 1.67 2.94
adHub 100 0 0 0 84 15 1.15 1.00
adTuk 100 0 0 0 97 2 1.06 1.00

TABLE I
MODEL SELECTION PERFORMANCE OF DIFFERENT METHODS IN

GAUSSIAN (UPPER TABLE) AND CAUCHY (LOWER TABLE) NOISE.

. � Oracle Las Hub adLas adHub adTuk
0.5 0.500 0.517 0.517 0.529 0.537 0.587
2.0 2.001 2.064 2.065 2.034 2.038 2.051
0.5 0.505 1.708 0.541 1.625 0.571 0.633
2.0 2.021 3.424 2.156 3.456 2.109 2.109

TABLE II
PREDICTION ERROR (PE) OF DIFFERENT METHODS IN GAUSSIAN (UPPER

TABLE) AND CAUCHY (LOWER TABLE) NOISE.

performance (full CMS rate) and in low SNR Cauchy noise,
CMS rates decrease to 84% and 97%, respectively. In terms of
PE-s of Table 2, Hub is seen to obtain the best performance
both in Gaussian and Cauchy noise. Adaptive M -Lasso (using
�

n

= log(log(n))) does not improve on PE of the initial
estimator, although it provides significant improvements in
model selection performance.
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