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Abstract—We extend the Wave Digital Filter (WDF) approach
to simulate reference circuits that involve operational amplifiers
(op-amps). We handle both nullor-based ideal op-amp models and
controlled-source-based linear op-amp macromodels in circuits
with arbitrary topologies using recent derivations for complicated
scattering matrices. The presented methods greatly increase the
class of appropriate circuits for virtual analog modeling, and
readily extend to circuits with any number of op-amps. Although
op-amps are essential to many circuits and deviations from
ideal can be important, previous WDF research applies only to
the limited case of circuits with ideal op-amps, in differential
amplifier topology, with no global feedback.

I. INTRODUCTION

Wave Digital Filters (WDFs) [1] are a popular approach to
virtual analog modeling of audio circuitry [2] that involves
combining digital models of individual circuit elements and
their connection topologies into a network representing the
entire circuit. Models of common circuit elements (volt-
age/current sources, linear one-ports, transformers, etc.) and
basic connection topologies (series/parallel) have been known
since the early days of WDF [1] but some elements have not
been represented in the wave domain. In this paper we consider
WDF modeling of a fundamental building block of electronic
circuit design [3], [4]: the operational amplifier (op-amp).

Op-amps show up in relevant audio circuits including
drum machines [5]–[8], guitar effect pedals [9]–[15], pre-
amplifiers [16], and musical filters [17]. Previously, WDF
methods were limited to ideal op-amps in differential amplifier
configurations [11], [14]—an approach that is intractable for
multiple op-amps with global feedback. In practice, op-amp
circuits usually have complicated topologies and non-ideal
characteristics of real op-amps can be significant [18].

In this paper we illustrate how topological techniques in-
troduced in [13] enable WDF simulation of circuits with an
arbitrary number of op-amps, modeled as ideal or non-ideal, in
any topology. The paper is structured as follows: §§II–III re-
view op-amps and previous work on deriving WDF scattering
matrices, §IV presents case studies on WDF simulations of a
Bridged-T Resonator with ideal and non-ideal op-amp models,
and §§V–VI discuss results, future work, and conclusions.

II. OPERATIONAL AMPLIFIERS

Op-amps (Fig. 1a) are active, high-gain electronic devices
that amplify the voltage difference between their input termi-
nals. Modern op-amps are complex on the device level and
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Fig. 1. The op-amp, an ideal model, and a non-ideal model.

include potentially dozens of transistors [19]. To simplify cir-
cuit design, analysis, and simulation, op-amp behavior is often
idealized completely or approximated using macromodels.

A. Ideal Op-Amps

An ideal op-amp has infinite open-loop gain, bandwidth,
and input impedance, along with zero common-mode gain and
output impedance [4]. In negative feedback, its output terminal
floats to whatever voltage is necessary and sources/sinks
whatever current is necessary to maintain equal input terminal
voltage (v+ = v−), which neither sink nor source any current
(i+ = i− = 0).

Op-amps in this configuration can be represented by the
network-theoretic two-port element known as the nullor with
one terminal of its output port grounded (Fig. 1b). A nullor
is composed of the two degenerate one-port elements known
as the nullator and norator [20] (Fig. 2). The nullator is
characterized by zero port voltage and zero port current, and
the norator by arbitrary port voltage and current. The port
between the input terminals of an ideal op-amp in negative
feedback is equivalent to a nullator—its zero port voltage
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Fig. 3. Nullor (a) and element stamp (b) for Modified Nodal Analysis.

and current embody the restrictions on the op-amp’s input
terminals. The port between output terminal and ground is
equivalent to a norator—its arbitrary port voltage and current
embody the ideal op-amp’s infinite gain and zero output
impedance [4].

B. Op-Amp Macromodels

Op-amp macromodeling was developed in the 1970s as a
reduced-complexity alternative to device-level op-amp mod-
els [21]. Macromodels are derived from device-level models
using two techniques: simplification and build-up. Simplifi-
cation involves replacing complicated arrangements of circuit
elements with ideal elements; build-up involves the addition
of circuit elements to capture some characteristics of the op-
amp’s behavior, without necessarily resembling the device-
level circuitry [22].

In this paper we use a three-stage linear macromodel [4]
(Fig. 1c). The first stage models input effects: input offset
voltage Voff, input bias currents Ib1, Ib2, input offset current
Ioff, and common mode (Ri,cm, Ci,cm) and differential (Ri,d,
Ci,d) input impedances. The second stage models the op-amp’s
differential (A0,d) and common-mode (A0,cm) gains using
voltage-controlled voltage sources (VCVSs) and its dominant
pole / gain–bandwidth product (GBWP) via Rbw and Cbw. The
third stage consists of a unity-gain VCVS output buffer and
an output resistance Ro. Most macromodel parameters can be
extracted directly from op-amp datasheets [4] or derived from
these values according to:

A0,cm = A0,d

10CMRR/20 , fbw = GBWP
A0,d

, CbwRbw = 1
2πfbw

,

Ib1 = Ib + Ios/2 , Ib2 = Ib − Ios/2 .
(1)

Input/output impedances usually must be approximated [23].

III. COMPLEX WDF TOPOLOGIES

Many circuits have complex R-type topologies that cannot
be decomposed entirely into series and parallel connections.
This is especially true for circuits with multiport linear el-
ements such as transformers, controlled sources, or nullors,
and is always true for circuits with at least one op-amp with
feedback, no matter how it is modeled. The class of R-type
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Fig. 4. (a) Op-amp-based Bridged-T Resonator schematic; (b) op-amp symbol
replaced by nullor; and (c) op-amp symbol replaced by linear macromodel.

topologies with or without absorbed multiport linear elements
is infinitely large. To form a WDF involving one of these
topologies one must derive its scattering behavior. [13] gives
a general procedure, which we review briefly, emphasizing
cases with currents which are not port currents (involving,
e.g., VCVSs and nullors) and how to handle nullor stamps.

An R-type adaptor is characterized by the scattering among
incident (a) and reflected (b) wave vectors, which are linear
combinations of port current i and voltage v:

a = v + Ri , b = v −Ri , (2)

where R is a diagonal matrix of its port resistances. a and b
are related by a scattering matrix S [13],

b = Sa , S = I + 2
[
0 R 0

]
X−1

[
0 I 0

]>
, (3)

where I is the identity matrix. X is a Modified Nodal Analysis
(MNA) matrix characterizing theR-type adaptor with attached
instantaneous Thévenin port equivalents [13]. X is formed
using element stamp methods [24] which embody Kirchhoff’s
Current Law and branch relationships. “Stamping” in voltage
sources corresponding to Thévenin equivalents before multi-
port linear elements with branch currents (e.g., VCVSs and
nullors) gives an MNA system for finding S with the form:Y A1 A2

B1 D11 D12

B2 D21 D22


︸ ︷︷ ︸

X matrix

vn
j1
j2

 =

0
e
0

 , (4)

where the partitions of X define the relationships among node
voltages vn, voltage source branch currents j1 = −i, other
branch currents j2, and voltage source values e = a.
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Fig. 5. Reference circuits rearranged to highlight WDF adaptor structures corresponding to (a) the nullor-based model (Fig. 4b); and (b) the macromodel-based
model (Fig. 4c). WDF adaptors are represnted by shaded boxes, whose darker shaded edges indicate the adapted port as in [2]. R-type adaptors in each are
shown with Thévenin equivalents (A · · ·F and A · · ·K, respectively) and node labels necessary for their scattering matrix derivations.

Stamps for standard circuit elements are given in litera-
ture [24], [25]—here we draw special attention to the nullor
stamp (Fig. 3). This stamp is a direct expression of the
properties of the nullor—the row “next” corresponds to the
equality of the input voltages (vα − vβ = 0) and column “n”
corresponds to the arbitrary output current (iγ = −iδ).

An alternative to incorporating the behavior of nullors as
element stamps is to perform row and column operations on
X [25]. This method complicates bookkeeping of (4), so we
recommend the element stamp method for finding S.

IV. CASE STUDY: BRIDGED-T RESONATOR

As a case study, we form WDF simulations of a represen-
tative analog drum machine circuit: the Bridged-T Resonator
(Fig. 4a), a bridged-T network (R1, R2, C1, C2) in the negative
feedback path of an op-amp. With an ideal op-amp, it is a
bandpass filter with center frequency fc and quality factor Q:

fc = 1
2π
√
R1R2C1C2

, Q =

√
R2/R1√

C1/C2+
√
C2/C1

. (5)

We add a representative load resistor RL on the output and
assume that Vin has 1 Ω of source resistance.

The Bridged-T Resonator “rings” in response to impulsive
signals, creating a decaying sinusoid of frequency fc whose
decay rate depends on Q. Classic analog drum machines like
the Roland TR-808 [26], TR-606, TR-909, CR-5000/8000, etc.
use variations on the Bridged-T Resonator in voice circuits
including bass drums [5], toms, congas, claves, rimshots,
cymbals, and hi-hats [6].

A. Nullor-Based Model
To form a nullor-based WDF model of the Bridged-T

Resonator, we first replace the op-amp in Fig. 4a with a nullor,
yielding Fig. 4b. As in [27], we form a graph with circuit nodes
as nodes, one-ports as edges, and replacement graphs for the
nullor (a multiport linear element); perform a search for “split
components”; and derive a WDF adaptor structure (Fig. 5a)
from the resulting SPQR tree.

Most of the elements in this WDF adaptor structure (re-
sistive voltage source, resistors, capacitors) have been known
since the early days of the field. However the large R-type
adaptor, which includes the nullor, requires special treatment.
Following the procedure in [13], we attach an instantaneous
Thévenin equivalent to each port A · · ·F (shown in Fig. 5a),
use element stamps representing the nullor (Fig. 3), and
Thévenin resistors and voltage sources to populate the MNA
matrix X describing the R-type adaptor (Fig. 6), which is then
used to solve for its scattering matrix according to (3).

B. Linear Macromodel
To form a macromodel-based WDF model of the Bridged-

T Resonator, we first replace the op-amp in Fig. 4a with the
linear macromodel shown in Fig. 1c, yielding Fig. 4c. Again
following the procedure of [27], we find the WDF adaptor
structure in Fig. 5b and solve for the scattering behavior of
the R-type adaptor according to [13].

Notice that although feedback in the op-amp has caused a
complicated R-type adaptor with all four VCVSs absorbed,
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X =
Y A1 A2

B1 D11 D12

B2 D21 D22


 =

GC 0 0 0 0 0 0 −GC 0 0 0 −1 0 0 0 0 −1 −1

0 GA 0 0 0 −GA 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0

0 0 0 GB 0 0 −GB 0 0 0 0 0 0 −1 0 −1 0 0

0 0 0 0 GD + GE + GF 0 0 0 −GD −GE −GF 0 0 0 0 0 0 1

0 −GA 0 0 0 GA 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 −GB 0 0 GB 0 0 0 0 0 1 0 0 0 0 0

−GC 0 0 0 0 0 0 GC 0 0 0 0 0 1 0 0 0 0

0 0 0 0 −GD 0 0 0 GD 0 0 0 0 0 1 0 0 0

0 0 0 0 −GE 0 0 0 0 GE 0 0 0 0 0 1 0 0

0 0 0 0 −GF 0 0 0 0 0 GF 0 0 0 0 0 1 0

−1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


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Fig. 6. Forming MNA matrix X, highlighting examples of resistor (red, RB), voltage source (blue, eb), and nullor (green, Fig. 3) element stamps.

TABLE I
SIMULATION PARAMETERS AND RESULTS.

component R1 R2 C1 C2 RL
value 500 Ω 10 MΩ 1 nF 1 nF 10 kΩ

(a) Bridged-T Resonator Component Values.

ideal NJM2904D MC4558L-D08 µA741TC units
Voff 0 2 2 1 mV
Ib 0 25 30 80 nA
Ios 0 5 5 20 nA
A0,d ∞ 100 200 200 V/mV

CMRR ∞ 85 90 90 dB
GBWP ∞ 0.6 2.8 1 MHz
Ri,cm ∞ 5 5 5 MΩ
Ri,d ∞ 3 2 5 MΩ
Ro 0 75 75 75 Ω

Ci,cm ∞ 2 2 2 pF
Ci,d ∞ 1.4 1.4 1.4 pF
A0,cm 0 5.623 6.325 6.325 V/V
fbw — 6 14 5 Hz
Rbw — 100 100 100 kΩ
Cbw — 0.2653 0.1137 0.3183 µF
Ib1 0 27.5 32.5 90 nA
Ib2 0 22.5 27.5 70 nA

(b) Op-Amp Parameters.

ideal JRC2904 µPC4558C µA741TC units
fc 2.232 1.805 2.115 1.945 kHz
Q 72.074 38.224 54.595 53.221 —

peak(dB) 60.000 52.680 57.124 56.142 V (dB)
DC offset 0 −228.988 −278.990 −701.986 mV

(c) Simulation Results Summary.

the R-type adaptor is not equivalent to the the op-amp in any
sense—it is a consequence of the topology of the entire circuit,
and electrical elements from “inside” the op-amp end up pulled
out of the R-type adaptor where appropriate (e.g., the series
combination of Voff and Vin and the parallel combinations of
2 ·Ri,cm, 2 · Ci,cm, Ib1 and Ib2).

V. RESULTS & DISCUSSION

We ran simulations using the representative (compare
against [26]) component values given in Table Ia for both the
ideal nullor-based model (§IV-A) and the linear macromodel
(§IV-B). Both took a 10-mV impulse as input. The macro-

model simulation was run with the parameter values shown in
Table Ib, which were extracted from the datasheets of three
common audio op-amps: the NJM2904D [28], the MC4558L-
D08 [29], and the µA741TC [30]. Shaded table entries were
not specified on the datasheets and were either duplicated
from another model or based on standard values [23]. Entries
derived according to (1) are given below the dotted line.

Fig. 7 shows simulation results in the frequency domain
and Table Ic summarizes extracted parameters. Accounting for
the warping introduced by the bilinear transform [31], [32],
fc and Q for the ideal simulation closely match the values
predicted by (5). The macromodel simulations diverge from
ideal behavior, including audible differences in frequency and
decay time.

The scattering b = Sa for the R-type adaptor in Fig. 5a is



bA
bB
bC
bD
bE
bF

=



1 0 0 0 0 0

−1.000 −0.001 −1.000 0.001 −0.001 0

−1.000 −0.999 0 −0.001 0.001 0

882.000 882.998 882.000 0.002 0.998 0

883.000 881.999 883.000 1.001 −0.001 0

884.000 882.998 882.000 1.002 0.998 −1





aA
aB
aC
aD
aE
aF

 (6)

where entries of S are denoted as smn, m,n ∈ [A · · ·F ],
meaning the contribution of an to bm. For example, sFA =
884.00.
sAA = 1 indicates perfect reflection off the ideal op-amp’s

infinite input impedance. The zeros in the rest of the row
signify that waves incident on other ports don’t contribute to
outgoing waves at port A. Similarly, the sFF = −1 indicates
perfect inverting reflection off of the ideal op-amp’s zero
output impedance and the zeros in the rest of the column
indicate that waves incident on port F don’t contribute to
outgoing waves at any other ports.

For adaptors without absorbed nullors, every entry in S will
depend on all port resistances RA · · ·RF . Tuning the upward-
facing port resistance (here, RC) so that its diagonal entry in S
is zero (here, sCC = 0) is called “adapting” this port. However,
here the elements in row A and column F are independent of
the chosen port resistances. This means that neither port A
(input) nor F (output) can be adapted, since neither sAA nor
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sFF can be set to zero. In practice, this is not a problem—
perfect reflections actually represent an opportunity to break
a WDF simulation into smaller sub-simulations [2], [11].

VI. CONCLUSION & FUTURE WORK

The approach presented in this paper enables WDF simula-
tion of circuits involving any number of op-amps in any topol-
ogy, modeled as ideal or as linear macromodels. Previously,
WDFs could only handle circuits with op-amps in differential
amplifier configuration, modeled as ideal [11], [14].

Choosing a suitable op-amp model for a WDF simulation
involves balancing complexity and accuracy. Nullor-based
ideal models have low complexity and can be sufficiently ac-
curate; incorporating aspects of linear macromodels increases
complexity but can capture important behavioral details.

Our results indicate that the ideal op-amp model and dif-
ferent parameterizations of a three-stage linear macromodel
lead to audible differences in the Bridged-T Resonator WDF
simulation. The DC offset introduced by the macromodel input
bias currents Ib1 and Ib2 could have perceptually relevant
effects if the resonator were embedded in a larger multi-stage
or nonlinear circuit.

The op-amp is one of a wide class of amplifiers that can
be modeled as nullors or linear macromodels, including oper-
ational inverting, current, floating [19], and transconductance
amplifiers, and current-feedback op-amps. Beyond amplifiers,
nullors can be used to model ideal transistors, and linear
controlled sources can be used as part of linearized models
of nonlinear devices, e.g., the Hybrid-π model of a bipolar
junction transistor [3]. The methods presented in this paper
are applicable to WDF modeling of all of these devices.

Though the current work considers only linear models,
nonlinear behaviors including slew-rate limiting and transfer,
input, and output nonlinearities [18] are often included in op-
amp macromodels alongside device-level models of differen-
tial transistor input stages [21]. Future work will incorporate
such nonlinear macromodels into WDF simulations, building
on a recent general framework for handling multiple nonlinear-
ities [33], [34] or non-adaptable linear elements [35] alongside
complex topologies.
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