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Abstract—Massive Multiple Input Multiple Output (MIMO)
systems can significantly improve the system performance and
capacity by using a large number of antenna elements at the
base station (BS). To reduce the system complexity and hardware
cost, low complexity antenna selection techniques can be used
to choose the best antenna subset while keeping the system
performance at a certain required level. In this paper, Tabu
Search (TS) and three bio-inspired optimization algorithms were
used for antenna selection in Massive MIMO systems. The
three bio-inspired algorithms were: Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), and Artificial Bee Colony (ABC).
Simulations showed promising results for the TS by achieving
higher capacity with GA than PSO and ABC, and much shorter
CPU time than any of the bio-inspired techniques.

Index Terms—Massive MIMO, Antenna selection, Bio-inspired
algorithms, Particle Swarm Optimization (PSO), Genetic algo-
rithm (GA), Artificial Bee colony (ABC), Tabu search (TS).

I. INTRODUCTION

Massive Multiple Input Multiple Output (MIMO) systems

are a state of the art research area in wireless communications,

and have received much attention over the last few years [1]

[2]. Thanks to the great advantages of Massive MIMO and

improved performance, they have been considered as a poten-

tial technology for fifth generation wireless communications

systems (5G) [3]. Massive MIMO refers to a system where

tens to hundreds of antennas are used at the Base Station (BS).

To obtain the full advantage of using Massive MIMO, every

antenna should be associated with its own Radio Frequency

(RF) chain. However, this increases the system complexity,

power consumption and hardware cost [4], since every RF

chain consists of low noise amplifier, mixer, and Analog to

Digital Converter (ADC) [5]. Antenna selection techniques

can be used to reduce the system cost, complexity and power

consumption. To achieve maximum capacity performance,

Exhaustive Search (ES) over all possible subsets is required,

which can be applied for a conventional MIMO system but

might be infeasible approach for a system with hundreds of

antennas. Recently, a considerable amount of work has been

published on low complexity antenna selection techniques. In

this paper, Tabu Search (TS) algorithm and three bio-inspired

algorithms were implemented to tackle the antenna selection

problem. TS and bio-inspired optimization techniques are

commonly used in many different engineering applications

and are known for their low complexity, while at the same

time finding near optimal solution for any certain optimization

problem.

Particle Swarm Optimization (PSO) algorithm was first de-

veloped by [6], and is a class of evolutionary algorithms (EAs)

based on the intelligent behavior of biological organisms. The

term “swarm” refers to a collection of interacting agents. For

example, a flock of birds can be thought of as a swarm whose

individual agents are birds, or a crowd is a swarm whose

agents are people, and so forth [7].

Genetic Algorithms (GAs) have been used since the 1950s.

One of the first people who worked on these algorithms and

also had the most influence on this field than any other was

John Holland of the University of Michigan [7]. Holland repre-

sented GA as a method for moving from a certain population

of “chromosomes” to another population by using genetics-

inspired operations such as Crossover, Reproduction, and

Mutation [8].

Artificial Bee Colony (ABC) algorithm is among the recent

EAs, and was developed by [9] to tackle optimization prob-

lems based on the intelligent behavior of honey bees on finding

food sources. In ABC algorithm, the colony of artificial bees

consists of three different types of bees, and they are used

to search for the best solution. These bees are: Employed,

Onlooker, and Scout bees [10].

Metaheuristic search methods such as greedy [11] and

tabu search [12] algorithms are known as low complexity

optimization techniques. However, tabu search outperforms the

greedy approach by using the memory to avoid revisiting the

previous moves (or solutions) to ensure an efficient search of

the neighborhood. A special matrix, called Tabu matrix, is used

to save the previous visited solutions in the neighborhood, and

forbid using them for a certain number of upcoming iterations.

Our contribution in this paper is that we developed the ABC

as well as the TS algorithms for antenna selection in massive

MIMO systems, and compared their capacity performance and

complexity with the well known PSO and GA algorithms.
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TS technique outperformed all the bio-inspired algorithms by

requiring a much lower complexity, and in the same time

achieving higher capacity with GA compared to PSO and ABC

algorithms.

II. SYSTEM MODEL

Consider an uplink MIMO system as depicted in Fig. 1

with Nr receive antennas at the base station and Nt transmit

antennas (Nr ≫ Nt). This system can be represented by the

following equation

y = Hx+ n, (1)

where x ∈ C
Nt×1 is the transmitted signal vector,

H ∈ C
Nr×Nt is the channel matrix, n ∈ C

Nr×1 is the

additive Gaussian noise with zero mean and variance of σ2,

and y ∈ C
Nr×1 is the received signal vector. Throughout this

work, we consider spatial correlation between the antennas at

the BS.

MIMOMIMO

Tx

2

1 1

2

Flat fading channel

Rx

NrNt

Fig. 1. Block diagram of an uplink MIMO system

A. Spatial correlation channel model

The correlated channel matrix H in (1) can be described

using the Kronecker model as follows [13]

H = R
1/2
R G R

1/2
T , (2)

where G ∈ C
Nr×Nt is a Gaussian matrix, with coefficients

assumed to be independent and identically distributed (i.i.d.),

with zero mean and unit variance. RR and RT are the receive

and transmit correlation matrices, respectively. It should be

clarified that the operator ( .)1/2 in (2) represents the Hermi-

tian square root of a matrix. In this paper, we are considering

correlation among antennas at the BS only, so the spatially

correlated channel matrix can be given as

H = R
1/2
R G. (3)

The model of the Nr × Nr correlation matrix was assumed

to have exponential correlation structure, which is a common

model and can effectively measure the level of spatial cor-

relation [13]. In this model, the correlation matrix can be

implemented using only one coefficient φ ∈ C with |φ| ≤ 1
as follows

Rij =

{

φ|j−i| , i ≤ j

(φ|j−i|)∗ , i > j,
(4)

where Rij is the correlation between the ith and jth receive

antennas, and | . | is the absolute value operator.

III. ANTENNA SELECTION PROBLEM FORMULATION

We consider a BS with massive number of antenna elements

(Nr ≥ 100), and choosing the best subset of these antennas

to maximize the system capacity. For a MIMO system, the

capacity can be given using the following equation

C = log
2
det(INr

+
ρ

Nt
HHH), (5)

where INr
is the Nr × Nr identity matrix, ρ is the signal to

noise ratio, and HH is the Hermitian (conjugate transpose)

of the channel matrix.

Out of the available Nr antennas at the BS, we employ the

optimization algorithms to choose the best Ns antennas that

can maximize the capacity.

For simplicity, we will define the antenna selection operator

as

s = [s1, s2, ....sNr
], (6)

where

si =

{

1 if the antenna is selected

0 Otherwise .
(7)

At first, s is initialized with zeros, and once the optimization

algorithm choose the best antenna subset, the location of these

antennas will become 1s, while the rest of the elements will

remain 0s. The optimized capacity can be then calculated as

C = log
2
det(INr

+
ρ

Nt
. diag(s) . HHH), (8)

where diag(s) is an Nr × Nr diagonal matrix with s is its

diagonal entry.

A. PSO algorithm for antenna selection

At first, a certain number of particles are generated ran-

domly. Each particle can be represented as a vector of length

Nr with Ns number of 1s located randomly along the vector.

The capacity represented by the fitness value is measured for

each particle. Additionally, the velocity is calculated, which

directs the particle to fly towards the best solution. In PSO,

every particle is influenced by its neighbors (called local best)

as well as by the best particle among the group (called global

best). The velocity of the particles is given as

vi(t) = vi(t− 1) + rand1 × k1(pli − si(t− 1))

+ rand2 × k2(pgi − si(t− 1), (9)

fi(t) = fi(t− 1) + vi(t), (10)

where vi(t) represents the velocity of the current iteration for

the ith antenna, and v(t − 1) is the velocity of the previous

iteration. rand1 and rand2 are random numbers drawn from a

uniform distribution between 0 and 1. k1 and k2 are weighting

factors with arbitrary values, they are assumed to have a value

of 2 in our simulations. pli represents the local best solution for

the ith antenna depending on the two neighbors of the current
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particle. In our simulations, the first and last particles were

assumed to be connected, i.e. the neighbors of the first particle

are the second and last particle of the population. Moreover,

the neighbors of the last particle are the first and the second last

particle in the population. pgi is the global best solution among

the whole population for the current antenna, and finally, f is

a vector initialized with zeros.

After each iteration, the global best and the local best solu-

tions are updated before the next iteration starts. Furthermore,

at the end of the iterations, the Ns maximum values of f will

be chosen as the surviving antennas, while the rest of antennas

will be ignored.

B. GA algorithm for antenna selection

At the beginning, a certain number of chromosomes are

generated randomly. Every chromosome can be represented

as a vector of “genes” (in this case bits, 0s or 1s), and the

number of 1s in each chromosome equal to Ns. The fitness

value for each chromosome will then be calculated and the

best K chromosomes will be chosen to a mating pool for the

reproduction process.

1) Reproduction process: In the reproduction process, the

best K chromosomes will be paired off randomly into pairs of

chromosomes, these chromosomes will then go through certain

operations to produce a new population of chromosomes.

In our simulations, K was equal to half the number of

chromosomes.

2) Crossover process: In this process, a mask of length

Nr is generated randomly with values of 0s and 1s, where

the probability of each bit being 0 is equal to the probability

of being 1 (50% each). In the crossover process, and for

each gene of the chromosome, if the values for the two

chromosomes in each pair were not equal, and the value of

the mask was 1 at the location of the current gene, then the

two chromosomes will exchange their genes to produce a new

chromosome.

However, this might cause a problem, since the total number

of 1s in the new chromosome might be less or more than Ns.

To overcome this issue, after generating each chromosome,

the number of 1s within this chromosome will be checked. If

it is less than Ns, then random locations of the chromosome

will change their values from 0 to 1, until the total number of

1s is equal to Ns. In contrast, if the total number of 1s within

any generated chromosome is greater than Ns, then random

genes will be ignored so that the total number of 1s in any

chromosome will be equal to Ns.

3) Mutation process: The last process of the GA algorithm

is the Mutation process, where a mutation mask will be

generated that consists of 0s and 1s according to the mutation

probability Pm. In our simulation, Pm was set equal to 0.09,

if the element of the mask was equal to 1. Subsequently, two

random genes in the corresponding chromosome will exchange

their information. If the two genes have the same information,

implying that both of them were zeros or ones, then the

chromosome will remain the same after the mutation process.

After finishing all the steps, the fitness value will be

calculated for the new population and the best K chromosomes

will go through the same process in the next iteration until the

maximum number of iterations has been reached. In the final

step, the chromosome with the highest fitness value will be

chosen.

C. ABC algorithm for antenna selection

In the ABC algorithm, every bee represents a possible

solution for the optimization problem. There are three different

types of bees used in this algorithm, they are: Employed bees

(EB), Onlooker bees (OB), and Scouts. At first, a certain

number of employed bees (initial solutions) are generated

randomly and their nectar amount, which is the capacity in

this case, is measured. The total number of solution, or food

sources, is equal to the number of employed bees. Every

solution can be represented as a vector of length Nr, which is

the number of parameters (0s and 1s) in the solution, and the

number of 1s in any solution is equal to Ns. These bees share

their nectar amount with the bees waiting on the dance area

in the hive. Every employed bee will return to the same food

position visited by itself after sharing its nectar amount, and

modifies its solution by changing the parameters randomly,

i.e. changing the location of the 0s and 1s, then measures the

modified fitness value. If the value of the modified solution

for every bee is better than the previous one, then the bee

will forget its old solution and memorizes the position of the

new food source, otherwise the bee will return to the initial

position.

The onlooker bee will then choose a food source (solution)

depending on the nectar amount measured by the employed

bee by using the following equation

Sourcei =
fi

∑N
n=1

fn
, (11)

where fi represents the fitness value of the source i, and N is

the total number of possible solutions (employed bees). Once

the onlooker bee has chosen the food source, then it will try to

improve its solution using other food sources by the following

equation

vij = |xij − xkj | , (12)

where k ∈ {1, 2, ....N} is a randomly selected index, and

i 6= k. j ∈ {1, 2, ....Nr} represents the parameter index of

the food source i. The total number of onlooker bees (OB) is

equal to the number of solutions N .

This modification on the food sources might cause the

problem of having more or less than Ns number of 1s in

any solution. To tackle this issue, random parameters will be

chosen to change their values so that the total number of 1s is

equal to Ns in all the food sources. After that the fitness value

of the modified solution will be calculated, and if it shows

an improvement compared to the old solution, then it will

memorize the modified solution, otherwise, the old solution

will be used.
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Finally, in order to search the area for the best food source

and not getting stuck in limited number of solutions, one scout

bee will be sent at each iteration to perform random search

and calculate the fitness value and compare it with the worst

solution in the population, if it was better then that food source

will be replaced with the new food source found by the scout

bee, otherwise the population will remain the same without

any further changes for the next iteration.

For the next iteration, the onlooker bees will modify the

solutions provided by the employed bees and a scout bee will

be sent to perform a random selection until a certain number

of iterations has been reached, and the best food source will

be chosen for the antenna selection operation.

TABLE I
CPU TIME REQUIRED FOR THE DIFFERENT ALGORITHMS AT SNR = 0 DB,

Nt = 10, Nr = 400, Ns = 100, AND 50 ITERATIONS

Algorithm
Specifications

Capacity
(Bits/sec/Hz)

CPU time
(Minutes)

PSO 20 particles 34.4627 7.8985
GA 20 chromosomes 35.5471 6.9756

ABC 20 food sources 34.5867 9.4569
TS 10 neighbors 35.9624 3.7001

TABLE II
CPU TIME REQUIRED FOR THE DIFFERENT ALGORITHMS AT SNR = 0 DB,

Nt = 10, Nr = 400, Ns = 100, AND 75 ITERATIONS

Algorithm
Specifications

Capacity
(Bits/sec/Hz)

CPU time
(Minutes)

PSO 20 particles 34.4775 12.5534
GA 20 chromosomes 36.1473 10.3469

ABC 20 food sources 34.6487 14.0196
TS 10 neighbors 36.0814 5.5620

TABLE III
CPU TIME REQUIRED FOR THE DIFFERENT ALGORITHMS AT SNR = 0 DB,

Nt = 10, Nr = 400, Ns = 100, AND 50 ITERATIONS

Algorithm
Specifications

Capacity
(Bits/sec/Hz)

CPU time
(Minutes)

PSO 40 particles 34.3620 15.7600
GA 40 chromosomes 36.2724 13.9459

ABC 40 food sources 34.7633 18.5817
TS 20 neighbors 36.5691 7.0808

D. TS algorithm for antenna selection

In the TS algorithm, an initial solution will be generated

randomly. This solution can be represented as a vector of

length Nr with Ns number of 1s and the rest are 0s. At

each iteration, a certain number of neighbors will be generated

and their fitness values will be calculated. The best among

these neighbors will be chosen as the next move for the next

iteration, even if its fitness value is less than the fitness value

of the current solution. The reason behind this is to ensure

exploring the area as wide as possible without getting stuck

in certain locations.

We define the neighbor in this algorithm as a solution differs

with the current solution by a very few number of antenna

locations, we call them the tabu antennas. For example:

choosing two out of the Ns antennas and change their locations

while keeping the locations for the rest of the antennas fixed.

After choosing the best among the neighbors, the old and

new locations of the tabu antennas will be stored in the tabu

matrix, and they can not be used for the next L iterations,

where L is the length of the tabu matrix. The first set of tabu

antennas to enter the tabu matrix will be the first one to leave

it.

In the next iteration, the new solution will be used and

new neighbors will be generated, and the best one will be

considered as the next move, and the tabu antennas will

be stored in the tabu matrix and so on until we reach the

maximum number of iterations. At the end, the solution with

the best fitness value in all the iterations will be declared as

the final solution for the antenna selection problem.

IV. PROCESSING TIME EVALUATION

To address the underlying complexity, the CPU time was

measured for the different algorithms on a 3.4 GHz intel

Core i5 PC, with 8 GB of RAM using the MATLAB R2014a

software program. In Tables I, II, and III the SNR value

was fixed at 0 dB, and the simulations were carried out 50

times for each algorithm. In Tables I and III, the number of

iterations were 50, while in Table II, 75 iterations were used.

On the other hand, the number of initial solutions were 20 for

PSO, GA and ABC respectively, and 10 neighbors for TS in

Tables I and II, while 40 initial solutions and 20 neighbors

were considered in Table III. The reason behind this is that

the complexity level of these algorithms depends on both the

number of iterations and the population size. In each case, the

capacity as well as the CPU time were captured and compared

for the different algorithms.

As Tables I, II, and III show, TS requires approximately

50% shorter CPU time than any of the bio-inspired algorithms,

and achieves at the same time matching or higher capacity

performance.

V. SIMULATION RESULTS AND DISCUSSION

In this section, the system capacity after applying the

different antenna selection techniques has been measured. The

system has 10 transmit antennas (Nt = 10) and 400 receive

antennas (Nr = 400). Two different scenarios have been

applied. The first one, the best 100 (Ns = 100) antennas were

selected, while in the second scenario, only 50 (Ns = 50)

antennas were chosen out of the 400 antennas. In both cases,

we assume spatially correlated MIMO channels, with the cor-

relation coefficient |φ| being equal to 0.85. Before we discuss

the results, the specifications of the different algorithms will

be introduced. In PSO, GA and ABC, the population consisted

of 20 random initial solutions (i.e. 20 particles for PSO, 20

chromosomes for GA, and 20 food sources for ABC). For the

TS algorithm, the number of tabu antennas in each iteration

was equal to 2, and the number of neighbors was 10, while the

length of the tabu matrix was equal to 50 for the first scenario
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and 25 for the second scenario. And the number of iterations

was 50 for all the algorithms.

Fig. 2 shows that TS and GA achieve higher rates than ABC

and PSO in both cases. Moreover, TS shows a slightly higher

capacity than GA when the number of chosen antennas is 100,

and the same capacity when Ns is equal to 50.

Fig. 3 shows the effect on the capacity by changing the

correlation coefficient from 0.5 to 1. It is obvious from the

figure that the performance is highly degraded when |φ| is

≥ 0.9.
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Fig. 2. Capacity Vs SNR for PSO, GA, ABC and TS algorithms with Nt =
10, and Nr = 400.
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Fig. 3. Capacity Vs |φ| for different algorithms at SNR = 0 dB, Nt = 10,
Nr = 400, and Ns = 100.

VI. CONCLUSIONS

In this paper, TS and three bio-inspired algorithms were

used for antenna selection in spatially correlated massive

MIMO uplink channels. The bio-inspired algorithms were:

PSO, GA, and ABC. Two types of results were presented,

the capacity, and the computational complexity using the CPU

time required for different scenarios. For the capacity, TS and

GA achieved higher rates than ABC and PSO. While for the

CPU required time, TS recorded a much shorter time than any

of the bio-inspired algorithms used in this paper.
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