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Abstract—A new method is presented to effectively estimate
the direction-of-arrival (DOA) of a source signal and the phase
errors of a sensor array with arbitrary geometry. Assuming that
one sensor (except the reference one) has been calibrated, the
proposed method appropriately reconstruct the data matrix and
establish a series of linear equations with respect to the unknown
parameters through eigenvalue decomposition (EVD). We build
a LS problem with a quadratic constraint and solve it by two
approaches. Unlike the conventional methods which are limited
to specific array geometries, the proposed can be applied to
arbitrary arrays. Moreover, it only requires one calibrated sensor,
which may not be consecutively spaced to the reference one. The
effectiveness of the proposed method is validated by simulation
results.

I. INTRODUCTION

The problem of direction-of-arrival (DOA) estimation

using sensor arrays plays an important role in various

areas such as wireless communication, radar and radio

astronomy [1]-[6]. In general, an accurate knowledge of the

array characteristics is required to determine the unknown

DOA of the incoming signal. However, the array systems

in practical applications usually suffer from various kinds

of imperfections and hence, the array manifold is only

imprecisely known. In this situation, the performance of

direction finding techniques may be significantly degraded

due to the mismatch between the actual and nominal array

manifolds.

During the past few decades, the problems of array

calibration and DOA estimation in the presence of array

uncertainties have received extensive attentions [7]-[14].

Assuming that a series of calibration sources are located

with exactly known DOAs, the array can be effectively cal-

ibrated. In practice, however, the calibration sources are not

always available. In order to deal with this problem, some

methods are proposed to calibrate arrays in the absence of

the exact knowledge of DOAs [9]-[11]. In particular, Weiss

and Friedlander proposed an alternative iterative method

(named as WF method), which can estimate the DOAs and

gain-phase error of each sensor element simultaneously.

However, this method may be considerably deteriorated

in the presence of relatively large phase uncertainties due

to the ambiguity in estimating the phase uncertainties and

DOAs. The eigenstructure based methods in [10] and [11]

can work well when the phase error is large. Nevertheless,

both of these two methods suffer from heavy computational

load.

Recently, partly calibrated arrays have received great

research interests [12]-[14]. It has been shown in [13] and

[14] that if each subarray is calibrated, a spectral rank-

reduction algorithm [14] or ESPRIT-like algorithm [13] can
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be utilized to determine the DOAs. For a partly calibrated

uniform linear array (ULA) where some sensors have been

calibrated, i.e. the gains/phases of these sensors are known

as prior, the shift-invariant property can be employed to

estimate the DOAs as well as the gains/phases. It should

be noted that the approaches in [12]-[14] require at least

one pair of consecutive calibrated sensors.

In this paper, the problem of DOA estimation and

phase error calibration in a sensor array with arbitrary

geometry is addressed. We develop a new method to

estimate DOA of a single signal and phase errors of

array provided that one sensor, which is different from the

reference one, is calibrated. The proposed method in this

paper constructs a series of data matrices and estimates

the unknown DOA together with phase errors by LS min-

imization. For arbitrary array, we propose two approaches

(generalized singular value decomposition (BSVD) [15]

and semidefinite relaxation (SDR) [16]) to solve the LS

problem. Simulation results demonstrate superiority of the

proposed method.

II. PROBLEM FORMULATION

Y

X

 

Signal source

Fig 1: A planar array with one calibrated sensor(p denotes

the reference sensor, w denotes calibrated sensor and o

denotes un-calibrated sensors).

Consider a planar array with M omnidirectional sen-

sors as shown in Fig.1. For simplicity, we assume that

the array and the signal source are coplanar and a signal

impinges on the array with DOA θ. Ideally, steering vector

a(θ) is given by

a(θ) = [1, ej2πλ
−1 pT

2 r, · · · , ej2πλ
−1 pT

M r]T (1)

where pm = [xm, ym]T and r = [sinθ, cosθ]T are the

coordinate of the m the sensor and the unit vector in the

direction of θ, respectively. In the presence of phase error,

the steering vector can be written as

ã(θ) = Φ a(θ) (2)

where Φ = diag{ej ϕ1 , · · · , ej ϕM}, ϕm(m = 1, 2, · · · ,M)

denotes the phase error of the mth sensor. The presence

of the mismatch between the actual and nominal array

manifolds significantly degraded the performance of some

classical subspace-based direction finding method, such as

MUSIC[2], ESPRIT[1], and so on. The received vector of

array is thus given by

x(t) = ã(θ)s(t) + n(t) = Φ a(θ)s(t) + n(t) (3)

where s(t) contains the complex envelope of the signal,

n(t) is a complex gaussian additive M × 1 noise vector.

The snapshot data matrix composed of L snapshots can be

written as

X = [x(1),x(2), · · · ,x(L)] = Φ a(θ) S + N (4)

where S = [s(1), · · · , s(L)] and N = [n(1), · · · , n(L)].

We take the sensor locates at origin as the reference one,

and assume that one of other sensors whose label is c has

been calibrated. In other words, it can be assumed that
ϕr = 0 and ϕc is known, where r is the label of the

reference sensor. Thus our objective is to simultaneously

estimate the DOA and phase errors from array output X

or covariance matrix R̂ = 1
LXXH.

III. PROPOSED METHOD

Before presenting the proposed phase error calibration

method, we first construct some selection matrices as

follow

ejA + ejB = 2Re(ej
A−B

2 )ej
A+B

2 (5)

where A and B are arbitrary real numbers.

A. Phase-error calibration

Let X(m, :) be the mth row of X where m =

1, 2, · · · ,M , and denote Xi+k as the summation of X(i, :)

and X(k, :), i.e.,

Xi+k = X(i, :) + X(k, :)

=
[
ej(2πλ

−1 pT
i r+ϕi) + ej(2πλ

−1 pT
k r+ϕk)

]
S + Ni+k

(6)
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where Ni+k = N(i, :) + N(k, :) is the compound noise.

From (5) we can rewrite Xi+k as

X
i+k = ci+ke

jΨi+k S +N
i+k (7)

where ci+k = 2Re
[
ej(πλ

−1(pi−pk)T r+
ϕi −ϕk

2 )
]

is a real

value and Ψi+k = πλ−1(pi + pk)T r +ϕi +ϕk

2
which in-

cludes the unknown parameters ϕi, ϕk and θ. Ψi+k can be

rewritten as

Ψi+k = bT
i+k u (8)

where u = [ϕ1, ϕ2, · · · , ϕM , sinθ, cosθ]T is a (M + 2) ×
1 vector and bi+k is the coefficient vector. Now, let us

construct Yi+k as

Yi+k =

[
X(1, :)

Xi+k

]

=

[
1

ci+ke
jΨi+k

]
S +

[
N(1, :)

Ni+k

] (9)

According to the subspace principal, we have the following

equation

span

([
1

ci+ke
jΨi+k

])
= span

(
γi+k

)
(10)

where γi+k is the principal eigenvector of Ri+k, which is

the corresponding covariance matrix of Yi+k. If the first

entry of γi+k is normalized to one, we have[
1

ci+ke
jΨi+k

]
= γi+k (11)

Notice that ci+k may be negative and this would lead to a π-

ambiguity in estimation of Ψi+k. However, if the following

inequality hold ture

max(abs(Ψi+k)) ≤
π

2
(12)

we have

Ψi+k = bT
i+k u = ∠

[
γi+k(2)

]
(13)

Because the value of Ψi+k obtained from (13) is on the

range
(
−π

2
, π

2

)
, and hance, it can be estimated correctly.

From the analysis above, we know that for given i

and k, equation (13) can provide a set of measurements of
ϕi, ϕk and θ with the certain weighted coefficient bi+k.

Provided that ϕ1 = 0 and ϕc has been known, (13) can be

rearranged as

wT
i+k v = ∠

[
γi+k(2)

]
− ϕc b(c) (14)

where v = [ϕ2, · · · , ϕc−1, ϕc+1, · · · , ϕM , sinθ, cosθ]T is

modified parameter vector by discarding ϕ1 and ϕc from u.

wi+k is similarly obtained by discarding the corresponding

terms from bi+k.

The analysis above shows that we can establish a

series of linear equations with respect to the unknown

parameters under mild conditions. If we can obtain enough

equations, it is possible to determine the unknown parame-

ters. In practical, however, there may be a small portion of

i and k satisfying the conditions expressed by (12). This

would result in an under-determined problem which gives

innumerable solutions. In the next subsection, we introduce

a method to increase the number of equations that satisfying

the given conditions.

B. Method to improve practicality

It is assumed that φm is zero-mean and distributed

uniformly in the range of [−∆,∆]. We have known the the

DOA of the signal locates in [θ0 − δ, θ0 + δ], where θ0 is a

coarse estimation of the DOA by using a direction finding

method such as Capon beamforming, and δ describes the

perturbation of the DOA estimation. A careful examination

of Ψi+k shows that a sufficient condition making (12) hold

is given by

πλ−1(pi + pk)T r−Ci+k ∈ [−∆i+k,∆i+k]

for θ ∈ [θ0 − δ, θ0 + δ]
(15)

and

∆ + ∆i+k ≤
π

2
(16)

where Ci+k is the phase of compensation term denoted by

Ci+k =
ϕi+k
Cmax + ϕi+k

Cmin

2
(17)

In (17), ϕi+kCmax and ϕi+kCmin can be determined by

ϕi+k
Cmax = max

θ

[
πλ−1(pi + pk)

T r
]

(18)

ϕi+k
Cmin = min

θ

[
πλ−1(pi + pk)

T r
]

(19)
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where θ ∈ [θ0 − δ, θ0 + δ]. From (15) to (19), we know

that

∆i+k =
ϕi+k
Cmax − ϕ

i+k
Cmin

2
(20)

Then the sufficient condition that make (16) hold can be

expressed as

∆ +
ϕi+k
Cmax − ϕ

i+k
Cmin

2
≤ π

2
, for θ ∈ [θ0 − δ, θ0 + δ] (21)

If equation (16) is satisfied for the given i and k, we can

use e−jCi+k to compensate X(i, :) and X(k, :), then sum

them up to obtain X̃
i+k

. This process can be represented

mathematically as follows

X̃
i+k

= X(i, :)e−jCi+k + X(k, :)e−jCi+k

= ci+ke
jΨ̃i+k S +Ñ

i+k (22)

where Ψ̃i+k = Ψi+k − Ci+k. According to the analysis

above, it is known that max
(

abs
(

Ψ̃i+k

))
is no larger

than π
2

. Construct Ỹ
i+k

as Ỹ
i+k

=

[
X(1, :)

X̃
i+k

]
, and

compute γ̃i+k throuth EVD of R̃
i+k

, which denotes the

covariance matrix of Ỹ
i+k

, we have the following equation

developed from (14)

wT
i+kv = ∠

[
γ̃i+k(2)

]
− ϕcb(c) + Ci+k (23)

C. Least squares problem with a quadratic constraint

Now, it can be found that we could obtain a series

of equations about the unknown parameters v, according

to (23) under specific condition. Let us define W as

the coefficient matrix that constructed by all wT
i+k along

column direction, and define d as the data vector piled up

with the right part of (23), where i and k are some specific

indices that make (16) hold. Then the problem of DOA and

phase error estimation can be equivalently described as a

LS optimization problem with a quadratic constraint

min
v
‖W v−d ‖2

s.t. ‖Z v ‖2 = 1
(24)

Assume that ṽ is a feasible solution of (24), then the con-

straint matrix Z =
[
02×(M−2) I2

]
makes sin2θ+cos2θ = 1

hold. It is known from [15] that if rank
(
[WT ZT]T

)
= M ,

the problem of (24) can be solved. In this paper, we solve

the problem of (24) by two different approaches.

The first approach is based on generalized singular

value decomposition (BSVD). Using the Lagrange multi-

plier method, we can formulate normal equation as

(WTW + µZTZ) v = WTd

‖Z v ‖2 = 1
(25)

The normal equation may have several solutions (vi, µi)

and the optimal solution is given as the solution with largest

µ. The solution to (24) can be achieved with the BSVD

method, cf. [15] for more details.

The second approach is based on semidefinite re-

laxation (SDR). In order to apply the SDR technique to

(24), we introduce an extra variable k and formulate the

following optimization problem

min
v,k
‖W v−k d ‖2

s.t. ‖Z v ‖2 = 1, k2 = 1
(26)

Subsequently, SDR can be applied and the optimal solution

v? can be obtained by either gaussian randomization or

EVD, cf. [16] for more details.

IV. SIMULATIONS AND RESULTS

In this section, numerical experiments are provided to

make comparisons with other techniques. In the next simu-

lations, the phase error {ϕm}Mm=1 of sensors are generated

by

ϕm =
√

12σϕηm (27)

where ηm is independent and identically distributed random

variable which is distributed uniformly in the range of

[−0.5, 0.5], σϕ is the standard deviation of ϕm.

The sensor configuration is shown in Fig.2, where

sensor 1 that locates at origin is taken as the reference one,
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Fig 2: Array configuration.
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Fig 3: RMSE of estimates versus standard deviation of

phase error.

sensor 6 has been calibrated. Each of other sensors has an

unknown phase error. Consider one signal impinging on

the array from direction at θ = 26◦, and we have known it

is located at [θ0−δ, θ0 +δ] with θ0 = 24◦ and δ = 8◦. The

signal-to-noise ratio (SNR) is 20dB, and number of samples

is 512. Based on 2000 experiments, the root mean square

error (RMSE) of DOA and phase error estimates versus

the standard deviation of the phase error σϕ are shown in

Fig.3. It can be seen from Fig.3 that all methods degrade

as σϕ increases. The WF method performs slightly better

than MUSIC algorithm using partly calibrated sensors, and

the propose method outperforms the WF method.

V. CONCLUSION

In this paper, we present a new method for estimating

DOA of a single signal and phase errors of array with

one calibrated sensor. A new way to construct a series

of equations with respect to the unknown parameters is

developed. The DOA and phase errors are then determined

from a LS minimization problem with a quadratic con-

straint. The proposed method is computationally attractive.

Furthermore, it allows us to calibrate a sensor array with

arbitrary geometry by using one calibrated sensor, and

does not require two calibrated sensors to be consecutively

spaced. The effectiveness of the proposed method is con-

firmed by various simulation results.

VI. ACKNOWLEDGMENT

This work was supported by the National Natural

Science Foundation of China under Grant 61401284 and

61301262. The authors would like to thank the anonymous

reviewers for their valuable comments and suggestions.

REFERENCES

[1] H. Krim and M. Viberg, /Two decades of array signal processing research:

the parametric approach,0 IEEE Signal Processing Magazine, vol. 13, pp.

67-94, 1996.

[2] R. O. Schmidt,/Multiple emitter location and signal parameter estimation,0

IEEE Transactions on Antennas and Propagation, vol. 34, pp. 276-280, 1986.

[3] Z. Xuepan, L. Guisheng, Z. Shengqi, Z. Cao, and S. Yuxiang, /Geometry-

Information-Aided Efficient Radial Velocity Estimation for Moving Target

Imaging and Location Based on Radon Transform,0 IEEE Transactions on

Geoscience and Remote Sensing, vol. 53, pp. 1105-1117, 2015.

[4] X. Zhang, X. Zhang, and B. Liu, /Estimation efficiency, accuracy and

robustness improvement by exploiting the geometry information in SAR-

GMTI system,0 in 2016 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2016, pp. 1791-1795.

[5] Z. Xuepan, L. Guisheng, Z. Shengqi, G. Yongchan, and X. Jingwei,

/Geometry-Information-Aided Efficient Motion Parameter Estimation for

Moving-Target Imaging and Location,0 IEEE Geoscience and Remote Sens-

ing Letters, IEEE, vol. 12, pp. 155-159, 2015.

[6] Z. Xuepan, L. Guisheng, Z. Shengqi, Y. Dong, and D. Wentao, /Efficient

Compressed Sensing Method for Moving-Target Imaging by Exploiting the

Geometry Information of the Defocused Results,0 IEEE Geoscience and

Remote Sensing Letters, vol. 12, pp. 517-521, 2015.

[7] B. C. Ng and C. M. S. See, /Sensor-array calibration using a maximum-

likelihood approach,0 IEEE Transactions on Antennas and Propagation, vol.

44, pp. 827-835, 1996.

[8] C. M. S. See, /Method for array calibration in high-resolution sensor array

processing,0 IEE Proceedings -Radar, Sonar and Navigation, vol. 142, pp.

90-96, 1995.

[9] B. Friedlander and A. J. Weiss,/Eigenstructure methods for direction finding

with sensor gain and phase uncertainties,0 in International Conference on

Acoustics, Speech, and Signal Processing, ICASSP-88., 1988, vol.5, pp. 2681-

2684.

[10] A. Liu, G. S. Liao, C. Zeng, Z. Yang, and Q. Xu,/An Eigenstructure method

for estimating DOA and sensor gain-phase errors,0 IEEE Transactions on

Signal Processing, vol. 59, pp. 5944-5956, 2011.

[11] S. Cao, Z. Ye, D. Xu, and X. Xu, /A Hadamard product based method

for DOA estimation and gain-phase error calibration,0 IEEE Transactions on

Aerospace and Electronic Systems, vol. 49, pp. 1224-1233, 2013.

[12] B. Liao and S. C. Chan, /Direction finding with partly calibrated uniform

linear arrays,0 IEEE Transactions on Antennas and Propagation, vol. 60, pp.

922-929, 2012.

[13] B. Liao and S. C. Chan,/Direction finding in partly calibrated uniform linear

arrays with unknown gains and phases,0 IEEE Transactions on Aerospace

and Electronic Systems, vol. 51, pp. 217-227, 2015.

[14] C. M. S. See and A. B. Gershman, /Direction-of-arrival estimation in

partly calibrated subarray-based sensor arrays,0 IEEE Transactions on Signal

Processing, vol. 52, pp. 329-338, 2004.

[15] W. Gander, /Least squares with a quadratic constraint,0 Numerische

Mathematik, vol. 36, pp. 291-307, 1981.

[16] Z. Luo, W. Ma, A. So, Y. Ye, and S. Zhang, /Semidefinite relaxation of

quadratic optimization problems,0 IEEE Signal Processing Magazine, vol.

27, pp. 20-34, 2010.

2016 24th European Signal Processing Conference (EUSIPCO)

1920


