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ABSTRACT
Signals recorded by microphones form the basis for a
wide range of audio signal processing systems. In some
applications, such as humanoid robots, the microphones may
be moving while recording the audio signals. A common
practice is to assume that the microphone is stationary
within a short time frame. Although this assumption may
be reasonable under some conditions, there is currently
no theoretical framework that predicts the level of signal
distortion due to motion as a function of system parameters.
This paper presents such a framework, for linear and circular
microphone motion, providing upper bounds on the motion-
induced distortion, and showing that the dependence of this
upper bound on motion speed, signal frequency, and time-
frame duration, is linear. A simulation study of a humanoid
robot rotating its head while recording a speech signal
validates the theoretical results.

I. INTRODUCTION
Processing of signals from moving sensors is a topic with

an increasing interest in the signal processing community.
Moving sensors are encountered in many applications that
naturally involve moving platforms, e.g. vehicle geolocation
[1], towed underwater sonars [2], and mobile robots [3].
Furthermore, motion has been introduced to enhance perfor-
mance in systems with stationary sensors, e.g. reduction of
the side-lobe level in beamforming [4]–[6], improvement of
spatial resolution in source localization [7]–[9], reduction of
the reconstruction error in the sampling of spatial fields [10],
and for rapid system identification [11]–[13]. The processing
of signals from moving sensors is typically performed by
dividing the signal into relatively short time frames, and
assuming that the sensor is quasi-static, i.e. stationary within
a single time frame [2], [3], [7], [9], [14]. However, if the
effect of motion is significant, this assumption may introduce
a significant error leading to poor performance.

In audio signal processing, with microphones as sensors,
two types of motion are common (i) motion along a straight
line (linear motion) [2], [4], [6], and (ii) circular motion [5],
[9], [13]. The effect of sensor motion along a straight line
on the measured signal is commonly studied in terms of the

Doppler shift (see, for example, [15]). The motion generates
a frequency-dependent shift in the signal spectrum by an
amount that depends on the sensor velocity relative to the
source. The effect of circular motion is similar, depending
on the angular velocity [16].

Although the effect of microphone motion on the mea-
sured signal is generally known, a theoretical framework that
expresses the magnitude of the mismatch between the signal
acquired by a stationary and a moving sensor as a function
of important system parameters, is not available. Moreover,
for a given system, there are no guidelines assisting a system
designer to predict whether the effect of microphone motion
may be significant, or can be neglected in practice.

The validity of the quasi-static assumption for signals
measured with moving microphones is studied in this paper.
A theoretical framework is developed to provide bounds on
the mismatch between signals recorded by stationary and
moving microphones within a single time frame. The depen-
dence of these bounds on frequency, microphone velocity,
and time-frame length are derived for linear and circular
microphone motion. The theoretical results are validated by
a simulation study of a microphones on a mobile robot.

The remainder of the paper is organized as follows.
Section II provides a review for signal models with linear and
circular motion. Section III presents a theoretical analysis of
the motion-induced distortion. A simulation-based experi-
ment is presented in Section IV, and Section V concludes
the paper.

II. SIGNAL MODEL - MOVING MICROPHONE
This section reviews representations for a signal recorded

by a moving microphone, which form the basis for the results
in the following section. Two different coordinate systems
are used in this paper, related to the two types of motion.
The first is the Cartesian coordinate system with a position
in space indicated by x = (x, y, z), used to describe linear
motion. The second is the spherical coordinate system [17]
with a position indicated by r = (r, θ, φ), were r is the radial
distance from the origin, θ is the elevation angle measured
from the z axis, and φ is the azimuth measured from the
x axis. The spherical coordinate system is used to describe
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circular motion. The two coordinate systems are related via
x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ.

Sound fields are commonly represented using a super-
position of plane waves [18]. In this work it is assumed,
for simplicity, that the sound field is composed of a single
unit-amplitude plane wave. Although the results developed
using this simplifying assumption can be extended to more
complex sound fields, the study of this extension is proposed
for a future work. The wave vector of the plane wave is given
by

k =
ω

c
(sin θ0 cosφ0 , sin θ0 sinφ0, cos θ0), (1)

where ω is the angular frequency, c is the speed of sound,
and (θ0, φ0) denote the propagation direction. Under free
field conditions, the sound field at a time t and a position
x, is given by [18]

p(t,x) = ejωt−k·x, (2)

where j =
√
−1. Using (2), the time-sampled signal mea-

sured by a stationary microphone positioned at the origin of
the coordinate system can be written as

s(n) = p(n/fs,0) = ejωn/fs , (3)

where n ∈ Z is the time index, fs denotes the sampling
frequency and 0 = (0, 0, 0) is the origin.

The time-sampled signal measured by a moving micro-
phone can be defined in a similar manner. Consider a
microphone moving at a constant speed along a straight line
through the origin of the coordinate system in the direction
of the wave propagation. The position of this microphone at
a time t is given by x(t) = vt, with v denoting the velocity
of the microphone. The signal measured by the microphone
in this case can be written as

sl(n) = p(n/fs,vn/fs) = ejω(1−β)n/fs , (4)

where β = ‖v‖
c is the Mach number. The motion-induced

frequency shift obtained in (4) is frequently referred to as the
Doppler shift [19]. The shift is dependent on the direction
of motion. In the case of motion in the direction of the wave
propagation, the shift is maximal. The signal measured by
a microphone moving in other directions can be represented
using (4) but with β given by

β =
‖v‖
c

cos(γ) (5)

with γ denoting the angle between the directions of motion
of the microphone and the wave propagation.

Another type of motion considered in this paper is circular,
i.e. the microphone moves along a circle with a constant
angular velocity denoted by α, measured in radians per
second. It is assumed, without loss of generality, that the
circle lies in the xy plane with its center at the origin of
the coordinate system. In this case, the microphone position
at a time t is given by x(t) = ra(cosαt, sinαt, 0), where

ra is the radius of the circle. The signal measured by the
microphone for the case of a circular motion can therefore
be written as

s(n) = p (n/fs, [cos(αn/fs), sin(αn/fs), 0] )

= ejω[n/fs−ux cos(αn/fs)−uy sin(αn/fs)], (6)

where ux = ra
c sin θ0 cosφ0 and uy = ra

c sin θ0 sinφ0.
The expressions in Eqs. (3)-(6) representing the signals

measured by stationary and moving microphones, will be
exploited in the next section for developing bounds for the
motion-induced mismatch.

III. THEORETICAL FORMULATION OF
MOTION-INDUCED DISTORTION

This section presents a theoretical formulation of the
motion-induced distortion in signals measured by moving
microphones, for both linear and circular motion. The mi-
crophone signal is assumed to be divided into time-frames
with a duration of L samples. Then, processing is applied to
individual time frames. Using Eqs. (3) and (4), the magnitude
of the difference between the signals measured by stationary
and moving microphones within a single time frame can be
expressed as

∆(n, β, ω) =
∣∣∣ejωn/fs − ejω(1−β)n/fs ∣∣∣

=
∣∣∣1− e−jβωn/fs ∣∣∣

= 2

∣∣∣∣sin(
βωn

2fs

)∣∣∣∣ , n = 1, 2, ..., L. (7)

Recall that sin(ψ) increases monotonically in the range ψ ∈
[0 π

2 ). Therefore, assuming βωL
2fs

< π
2 , an upper bound on the

motion-induced distortion in a single time frame is derived:

∆(n, β, ω) ≤ 2

∣∣∣∣sin(
βωL

2fs

)∣∣∣∣
= ∆(L, β, ω), n = 1, ..., L, (8)

This assumption is expected to hold as long as the speed
of the microphone is significantly lower than the speed of
sound, i.e. β << 1. Furthermore, with βωL

2fs
<< π

2 , applying
sin(ψ) ≈ ψ, it approximately holds that

∆(L, β, ω) ≈ βωL/fs, (9)

which implies that this upper bound is linearly proportional
to the microphone speed, the signal frequency, and the time-
frame duration. This relation will be demonstrated by means
of a numerical simulation in Section IV.

Similar to the case of a linear motion, in the case that the
microphone is moving along a circle, the motion-induced
distortion is expected to depend strongly on the angle be-
tween the wave propagation and the instantaneous direction
of microphone motion. When this angle is zero, i.e. the
direction of wave propagation and microphone motion is
the same, the distortion is largest. Following the derivation
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of Eq. (6), at time n = 0 the microphone position is given
by (r, θ, φ) = (ra, π/2, 0). Assuming further that the wave
propagation direction is given by (θ0, φ0) = (π/2, π/2), and
substituting in Eq. (6), the signal at the microphone can be
written as

s(n) = ejω[n/fs−sin(αn/fs)ra/c], n = 1, ..., L. (10)

Next, using Eqs. (3) and (10), the difference between the
signals measured by the stationary and moving microphones
is given by

∆(n, α, ω) =
∣∣∣ejωn/fs − ejω[n/fs−sin(αn/fs)ra/c]∣∣∣

=
∣∣∣1− e−jω sin(αn/fs)ra/c

∣∣∣ , n = 1, ..., L. (11)

Recall that the duration L/fs of a typical time frame in
speech processing is in the range of tens of milliseconds,
while the angular velocity of a physical microphone is
not expected to exceed several radians per second. It can
therefore be assumed that αn

fs
<< 1. Substituting this

assumption into (11) and applying sin(ψ) ≈ ψ, leads to

∆(n, α, ω) ≈
∣∣∣1− e−jωαnra/(cfs)∣∣∣

= 2

∣∣∣∣sin(
ωαnra
2cfs

)∣∣∣∣ , n = 1, ..., L. (12)

Assuming further that ωαnra
cfs

< π
2 , an upper bound on

the distortion induced by a circular microphone motion is
obtained:

∆(n, α, ω) ≤ 2

∣∣∣∣sin(
ωαLra
2cfs

)∣∣∣∣
= ∆(L,α, ω), n = 1, ..., L. (13)

Finally, similar to the linear motion case, in the range of
parameters where it holds that ωαnra

cfs
<< π

2 , the upper
bound approximately equals to

∆(L,α, ω) ≈ ωαLra
cfs

. (14)

It should be emphasized that the small angle approxima-
tion mean that the displacement of the microphone from
the initial position is small, and so the analysis is relevant
to the starting position, i.e. (ra, π/2, 0). At this position
the direction of motion is the same as the direction of the
wave propagation, which implies that the distortion is largest.
For other starting positions the distortion is expected to be
smaller, and so Eq. (14) can indeed be considered as an
upper bound.

In summary, similar to the case of a linear motion, the
upper bound on the distortion induced by the circular motion
is also linearly proportional to the angular velocity, the signal
frequency, and the time-frame duration. These relations are
further investigated using numerical simulations in the next
section.

IV. SIMULATION STUDY - MICROPHONE ON A
ROBOT

This section studies the distortion in speech signals mea-
sured by microphones mounted on the head of a humanoid
robot. A far-field sound source was placed in free field,
generating speech signals composed of 10 different sentences
from the TIMIT speech database [20], sampled at fs =
10 kHz. The robot NAO [21] was positioned at the origin
of the coordinate system, having two microphones mounted
on its head, as illustrated in Fig. 1. The radial distance of the
two microphones from the origin of the coordinate system
is 3.7 cm and 6.1 cm, respectively. The signals recorded at
the two microphones were computed by filtering the speech
signals with the appropriate Head-Related transfer Function
(HRTF) of the robot, calculated from the geometry of the
head using the Boundary Element Method (BEM) [22].

Fig. 1. The robot head with the two microphone positions
at ra = 3.7 cm (left) and 6.1 cm (right).

The motion of the microphones was generated by rotation
of the robot head. The filtering of the speech signal with
the HRTFs was realized using the overlap-save method to
allow modification of the filters in time, to account for
head rotation. Two signals types were generated for each
microphone: (i) the first signal simulating head rotation
accurately by changing the overlap-save filters each sam-
ple according to the new head orientation, (ii) the second
signal simulating a quasi-static head motion by changing
the filter only once per time frame of L samples. The
simulations were repeated with different time-frame lengths
and angular velocities. The motion-induced distortion was
computed from the normalized difference between the Short-
Time Fourier Transform (STFT) of the two signals. This
difference was then averaged over all time frames and for
all 10 speech signals. Values of 128 ≤ L ≤ 2014 samples
and 45 ≤ α ≤ 360 deg/s were used for the time-frame length
and the head rotation, respectively.

The resulting normalized distortion is plotted in Figs. 2,
3, and 4 as a function of the time-frame length, frequency,
and angular velocity, respectively. The figures clearly show
that the dependence of the distortion on all three parameters,
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Fig. 2. Normalized motion-induced distortion versus time-
frame length, L, at a frequency of 1 kHz and for an angular
velocity of 90 deg/s.

Fig. 3. Normalized motion-induced distortion versus fre-
quency, for a rotating with an angular velocity of 90 deg/s,
using L = 256 samples.

the time-frame length, frequency, and angular velocity is
approximately linear, i.e. the distortion increases by about
6 dB per octave. This observation is in complete agreement
with the results of Section III. A slight deviation from
linearity can be observed in Fig. 3 at higher frequencies.
This is believed to be due to violation of the assumption
that led to the result in (14), which may be expected at high
frequencies. In addition, note that in all three figures the
distortion in the second microphone is larger by about 4 dB,
which is approximately equal to the ratio between the radii of
the two microphones, i.e. 20 log10(6.1/3.7) ≈ 4.3 dB. This
observation is also in agreement with Eq. (14), that predicts

Fig. 4. Normalized motion-induced distortion versus angular
velocity of the robot head, α, at a frequency of 1 kHz and
for a time-frame length of L = 256 samples.

a linear dependence on the rotation radius ra.
Figures 2-4 demonstrate that for a typical scenario of

a moving humanoid robot recording a speech signal, the
distortion is lower than −25 dB. This provides a support for
the common practice in the literature, in which the effect
of motion within a time frame is ignored. Nevertheless, as
demonstrated above, the distortion is expected to increase
linearly with frame length, frequency and speed of motion.
For example, for some dereverberation algorithms, the re-
quired time-frame length may exceed 1s [23]. In this case the
6 dB/octave rule may predict an increase of 30 dB or more in
the distortion level, and the motion-induced distortion within
a time frame can no longer be ignored.

V. CONCLUSION
A theoretical model for the motion-induced distortion for

a signal recorded by moving microphone has been presented.
A moving humanoid robot has been studied as an example.
It has been shown that motion within a single frame can
be ignored when assuming typical values for the robot
motion and time-frame duration employed for the audio
signal processing. However, significant deviation from these
typical values may lead to significant distortion, in which
case modeling the motion within a time frame may be
necessary.
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