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Abstract—In this paper, a Constrained Mismatched Maximum 

Likelihood (CMML) estimator for the joint estimation of the 

scatter matrix and the power of Complex Elliptically Symmetric 

(CES) distributed vectors is derived under misspecified data 

models. Specifically, this estimator is obtained by assuming a 

Normal model while the data are sampled from a complex t-
distribution. The convergence point of such CMML estimator is 

investigated and its Mean Square Error (MSE) compared with 

the Constrained Misspecified Cramér-Rao Bound (CMCRB). 

Keywords - Misspecified model; Covariance estimation; 

Constrained Maximum likelihood; Cramér-Rao Bound. 

I.  INTRODUCTION 

This paper deals with the scatter matrix estimation problem 
for Complex Elliptically Symmetric (CES) distributed data in 
the presence of unknown extra parameters. Thanks to their 
flexibility, the CES distributions represent a reliable data model 
in many areas such as radar, sonar, and communications [1]. 
The complex Normal, Generalized Gaussian, K-distribution, 
and the complex t-distribution are some examples of 
probability density functions (pdf) belonging to the CES class. 
A CES distribution is completely characterized by the mean 
value γ, the scatter (or shape) matrix Σ and the density 
generator h. Given a particular CES distribution, its density 
generator could depend on some extra parameters, (e.g. shape 
and scale parameters for a complex t-distribution) that are in 
general unknown and need to be estimated from the data along 
with γ and Σ. However, the joint Maximum Likelihood (ML) 
estimator of all these unknown quantities often encounter 
computational difficulties and convergence (or even existence) 
issues. Moreover, even in those cases in which a joint estimator 
could be successfully derived, a perfect match between the true 
statistical data model and the one assumed to derive the 
estimator is often difficult to achieve. For all these reasons, one 
has to rely on mismatched estimators, i.e. on the estimation 
algorithm derived under an assumed data distribution different 
from the true one. In [2], we investigated the scatter matrix 
estimation problem for CES distributed vectors in the presence 
of model mismatching, but under the assumptions of a perfect 
knowledge of the extra parameters. In particular, the 
performance of the Mismatched ML (MML) estimator has 
been compared with the Misspecified Cramér-Rao Bound 
(MCRB) in some relevant study cases.  

The main aim of this paper is to generalize the results in [2] 
to the more realistic case in which both the scatter matrix and 
the unknown extra parameters of the assumed CES distribution 
need to be estimated from the data. In particular, we investigate 
a recurring scenario in radar applications: the true data pdf is a 
complex t-distribution, while the ML estimator of the scatter 
matrix and of the data power is derived under a Normal model 
assumption. The choice of the t-distribution as true data model 
has been motivated by experimental evidences (see e.g. [3]) 
that proved its reliability to model spiky clutter data. On the 
other hand, many radar systems exploit the Normal model for 
data inference due to its analytical tractability and the 
consequent real time implementation of the estimation 
algorithms based on it.  

II. OVERVIEW OF THE CES DISTRIBUTIONS 

A complex N-dimensional random vector xm is CES 
distributed, i.e. ( , , )m NCE hx γ Σ∼  , if its pdf is of the form: 

 ( ) ( ) ( )( )1 1
,

H

X m N h m m
p c h

− −= − −x Σ x γ Σ x γ  (1) 

where h is the density generator, cN,h is a normalizing constant, 
{ }

m
Eγ x� , and Σ is the normalized (or shape) covariance 

matrix, also called scatter matrix. Due to the well-known 
ambiguity between the scatter matrix and the density generator 
of any CES distribution, we impose the following constraint: 
tr(Σ)=N. As a consequence, if {( )( ) }H

m mE − −M x γ x γ�  is the 
covariance matrix of the random vector xm, then Σ=NM/tr(M). 
It is important to observe that, for some CES distributions, the 
un-normalized covariance matrix M does not exist, but the 
scatter matrix Σ is still well defined. Based upon the 
Stochastic Representation Theorem [1] any ( , , )m NCE hx γ Σ∼  
with rank(Σ)=k≤N admits the stochastic representation 

m d R= +x γ Pu , where the non-negative random variable (r.v.) 

R Q� , the so-called modular variate, is a real, non-negative 
random variable, u is a k-dimensional vector uniformly 
distributed on the unit hyper-sphere with k-1 topological 
dimensions such that uHu=1, R and u are independent and 
Σ=PPH is a factorization of Σ, where P is a Nxk matrix and 
rank(P)=k. In the following, we assume that Σ is real and full-
rank. For CES distributions, the term 2 { }E Q Nσ �  can be 
interpreted as the statistical power of the random vector xm, i.e. 
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the covariance matrix M and the scatter matrix Σ are related 
by M=σ2

Σ. 

III. THE MISMATCHED SCENARIO 

A. True data model: the complex t-distribution. 

The complex t-distribution is completely characterized by 
its mean vector γ , its scatter matrix Σ  and its shape and scale 
parameters, λ and η respectively. In particular, a complex N-
dimensional zero-mean ( 0=γ ) random vector xm is t-
distributed if its pdf can be expressed as [1]: 

( )
( )

( )
11

( ; , , )
N

H

X m m mN

N
p

λ λ
λ λ λ

λ η
λ η ηπ

− +

−
Γ +    

= +   
Γ    

x Σ x Σ x
Σ

 (2) 

The complex t-distribution has tails heavier than the 
Normal one for every λ∈ (0,+∞), while the limiting case 
λ→+∞ yields the complex Normal distribution. Moreover, the 
statistical power is a function of λ and η as follows [2]: 

 { } ( )2 1E Q Nσ λ η λ= = −
Σ

. (3) 

B. Assumed data model: the complex Normal distribution. 

We assume a complex Normal model for the data, i.e. we 
assume that the M vectors of the available dataset 1{ }M

m m==x x  
are, zero-mean, independent, identically distributed (iid) and 
each one is distributed according to a complex Normal 
multivariate pdf, which also belongs to the CES family: 

 ( ) ( )
( )

1
2

22

1
; ; , exp

H

m m
X m X m N

f f σ
σπσ

− 
= − 

 

x Σ x
x θ x Σ

Σ
� . (4) 

The covariance matrix is 2{ }H

m m
E σ= =M x x Σ , where 

tr(Σ)=N and σ2 is the power. Since the statistical inference on 
the data is built on the assumed model, the parameter vector to 
be estimated can be expressed as 2[vecs( ) ]T Tσ=θ Σ , where 
the vecs-operator is the “symmetric” counterpart of the 
standard vec-operator that maps a symmetric NxN matrix Σ in a 
l=N(N+1)/2-dimensional vector whose entries are the elements 
of the lower (or upper) triangular sub-matrix of Σ. The 
mismatch occurs in the estimation of θ since the true data are 
distributed according to the complex t-distribution ( ; )X mp x θ  in 

eq. (2), where [vecs( ) ]T Tλ ηθ Σ�  is the true parameter 

vector and Σ  is the true scatter matrix.  It is worth noting that, 
in the mismatched scenario, the true parameter space and the 
assumed parameter space are different. Specifically, the true 
parameter space is T (0, ) (0, )l∋ ⊂ × ∞ × ∞θ � , while the assumed 
parameter space is (0, )l∋ Θ ⊂ × ∞θ �  where ×  indicates the 
Cartesian product. Moreover, the constraint on the trace of Σ 
limits both the true and assumed parameter vector to belong to 
two lower dimensional smooth manifolds T={ T tr ( ) }N∈ =θ Σ�  

and ={ tr ( ) }NΘ ∈Θ =θ Σ� , respectively. 

IV. THE CONSTRAINED MML ESTIMATOR 

In order to obtain an estimate of θ, we apply the ML 
method under the assumed data model, so what we get under 
mismatched conditions is the so-called MML estimator [4]: 

 ( ) ( ) ( )
1

ˆ arg max ln ; arg max ln ;
M

MML X X mm
f f

=
∈Θ ∈Θ

= ∑
θ θ

θ x x θ x θ
� �

�  (5) 

where ( ; )
m X m

px x θ∼  is given in eq. (2) and tr( ) tr( ) N= =Σ Σ is 
the constraint. It can be shown (see [2], [4] and references 
therein) that the MML estimator converges almost surely (a.s.) 
to the so-called pseudo-true parameter vector θ0, i.e. the 
vector that minimizes the Kullback-Leibler divergence (KLD) 
between ( ; )

X m
p x θ  and ( ; )X mf x θ : 

 ( )
. .

0
ˆ

a s

MML
M →∞
→θ x θ , (6) 

 ( ){ } ( ){ }{ }0 arg min arg min ln ;
p X m

D p f E f
∈Θ ∈Θ

= = −
θ

θ θ

θ x θ
� �

 (7) 

where: 

 ( )
( ; )

ln ( ; )
( ; )

X m

X m

X m

p
D p f p d

f

 
 
 

∫θ

x θ
x θ x

x θ
� . (8) 

Due to the lack of space, we refer the reader to [2], [4] and 
references therein for a more comprehensive review of the 
asymptotic properties of the MML estimator (e.g. its 
asymptotical Gaussianity). In [2] the MML estimator of the 
scatter matrix was evaluated for the complex-t distribution 
when the assumed misspecified distribution is a complex 
Normal pdf, under the assumption of a-priori known power. 
Here, we generalize this result for the case of unknown power, 
i.e. when the power σ2 and the scatter matrix Σ are unknown 
and need to be jointly estimated. Due to the well-known 
ambiguity between the scatter matrix and the density generator 
of a CES distribution, the power and the scatter matrix are 
jointly identifiable if and only if a constrain on Σ is established 
[1]. Even if different constraints can be set on Σ, here we 
choose tr(Σ)=N since it guarantees the following factorization 
of the covariance matrix: M=σ2

Σ, as discussed in Sect. II.  

To derive analytically the constrained MML (CMML) 
estimator under the mismatched scenario discussed in Sect. III, 
one has to find the maximum of the log-likelihood function 
subjected to the linear constraint tr(Σ)=N. To do this, we do 
not rely on the Lagrange multiplier method, but we follow a 
different, yet equivalent, procedure [5]: we first derive the 
unconstrained MML estimator and then we project it on the 
(lower dimensional) manifold Θ�  by imposing the constraint. 

The likelihood function can be expressed as: 

 
( )

1

2 1 2

1

( ) ln ;

ln ln .

M

X mm

M H

m mm

L f

NM Mσ σ

=

−

=

=

= − − −

∑

∑

θ x θ

Σ x Σ x
 (9) 

Then, the MML estimator can be obtained by solving the 
following problem: 
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1
2 2 4 1

1
1 1

2 1

( ) 1
0

( )

M H

m mm

M H

m mm

L NM

L
M

σ σ σ

σ

−

=

−
− −

=

∂
= − + = ∂


∂ = − + =
 ∂

∑

∑

θ
x Σ x

θ Σ
Σ x x Σ 0

Σ

. (10) 

Then, imposing the constraint, we have: 

 

2 1

1

11

1

1 ˆˆ

ˆ
ˆ

ˆs.t. tr( )

M H

MML m MML mm

M H

MML m mM mH

m MML mm

MML

NM

N

N

σ −

=

=−

=


=




=



=


∑

∑
∑

x Σ x

Σ x x
x Σ x

Σ

. (11) 

Hence, we get the CMML estimators of Σ and σ2: 

 

2 1

1

1

1

1 ˆˆ

ˆ

M H

CMML m CMML mm

M H

CMML m mM mH

m mm

NM

N

σ −

=

=

=


=



 =


∑

∑
∑

x Σ x

Σ x x
x x

. (12) 

Now we need to find the vector 2
0 0 0[vecs( ) ]T Tσ=θ Σ  that 

minimizes the KLD between ( ; )
X m

p x θ  and ( ; )X mf x θ . This 
vector is the convergence point of the CMML estimator in eq. 
(12). To this end, we have to solve the following system: 

 

( ) ( )

( ) ( )

2

2 2

2

ln ; ,
0

ln ; ,

X m

p

X m

p

fD p f
E

fD p f
E

σ

σ σ

σ

  ∂∂   = − = 
∂ ∂    


 ∂∂  

= − =  
∂ ∂   

θ

θ

x Σ

x Σ
0

Σ Σ

. (13) 

The first equation immediately provides: 

 
( ) { }2

2 2 2 2 4
ln 0p

p

D p f E QQ N
E N σ

σ σ σ σ σ

∂  ∂  
= + = − =  

∂ ∂   

θ ΣΣ  (14) 

where 1H

m mQ
−

Σ x Σ x� . Solving eq. (14), we get 2
0 { }pE Q Nσ = Σ

. 

The derivative of the KLD with respect to Σ is given by [2]: 

 
( ) { }

( ) ( )1 1 1
2

,   tr tr
D p f E Q

N
Nσ

− − −
∂

= − = = =
∂

θ Σ
Σ Σ ΣΣ 0 Σ Σ

Σ
 (15) 

whose solution is: 
0

2
0 { }

p
E Q Nσ=

Σ
Σ Σ . Putting together the 

two solutions, we finally get: 

 ( ) ( )0

0 02
0

{ }
, s.t. tr trpE Q

N
Nσ

= = = =
Σ

Σ Σ Σ Σ Σ , (16) 

where: 

 
( )

0

1
2 2
0

{ } { } { }

1

H

p p p m m
E Q E Q E

N N N

λ
σ σ

η λ

−

= = = = =
−

Σ Σ
x Σ x

, (17) 

and 2σ  is the true power of the data. Eqs. (16)-(17) show that 
the CMML estimator converges a.s. to the parameter vector 

( )
. .

2
0

ˆ [vecs( ) ]
a s

T T

CMML
M

σ
→∞

→ =θ x θ Σ  , i.e.: 

 ( ) ( ) ( )
. . . .

2 2 ˆˆ 1 ,
a s a s

CMML CMML
M M

σ σ λ η λ
→∞ →∞

→ = − →x Σ x Σ . (18) 

Hence, it provides consistent estimates for both the scatter 
matrix and the power of the true data model. 

V. CONSTRAINED MISSPECIFIED CRAMÉR-RAO BOUND 

The mismatched counterpart of the Cramér-Rao Bound 
(CRB) for the error covariance matrix of any unbiased (in a 
proper sense) estimator of a deterministic parameter vector 
under misspecified models has been originally derived by Q. H. 
Vuong in [6], and then deeply investigated in [7]. This bound is 
known as the Misspecified Cramér-Rao Bound (MCRB). 
Recently, the application of the MCRB in different signal 
processing problems has been investigated and discussed: see 
e.g. [7] and [8] for Direction of Arrival (DoA) estimation 
problems and [2] for inference problems on CES distributed 
random vectors. In some applications, and in particular in the 
one discussed here and in [2], one has to deal with additional 
constraints on the unknown parameter vector. In our recent 
work [9], we generalized the findings of [10] and [11] on the 
Constrained CRB in order to obtain a constrained version of the 
MCRB, i.e. CMCRB. The finding in [9] can be summarized by 
the following Theorem: 

Theorem: A Constrained MCRB (CMCRB) for any 
misspecified (MS)-unbiased estimator of θ0 is given by: 

 ( ) ( ) ( )
0 0 0

1 1

0CMCRB ,T T T T
− −

=
θ θ θ

θ U U A U U B U U A U U  (19) 

where the (possibly singular) matrices 
0θ

A  and 
0θ

B  are 

defined, as in the unconstrained case, as: 

 ( ){ }
0 0 0 0ln ;T

p X
E f∇ ∇

θ θ θ
A x θ� , (20) 

 ( ) ( ){ }
0 0 00 0ln ; ln ;T

p X X
E f f∇ ∇

θ θ θ
B x θ x θ� , (21) 

U is a matrix whose columns form an orthonormal basis of the 
null-space of the constraint’s Jacobian matrix. Moreover, the 
definition of MS-unbiasedness can be found in [2, Def. 2].  

The proof of this Theorem can be found in [9]. 

In the following, we provide the explicit expression of the 
bound in (19) evaluated for the specific mismatched problem at 
hand: the joint estimation of the power and of the scatter matrix 
for an assumed Normal model when the data follow the 
complex t-distributed model instead. The parameter vector θ0 is 
the one given in eq. (18), i.e. the convergence point of the 
CMML estimator. 

A. Evaluation of 
0θ

A  

0θ
A  can be decomposed in the following blocks: 

 
0

2

cT

T

c
A

σ

 
=  

 

Σ

θ

A A
A T T

A
, (22) 

 
1

N 
=  
 

D 0
T

0
, (23) 
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where DN is the so-called Duplication matrix of order N 
[12]. The duplication matrix is implicitly defined as the 
unique N

2xl (where l=N(N+1)/2) matrix that satisfies the 
following equality: DNvecs(A)=vec(A) for any symmetric 
matrix A. Following the procedure in [2] and [13], we have: 

 1 1− −= − ⊗
Σ

A Σ Σ  (24) 

 ( )2

2

02 2 4
ln ; ,

p X m

N
A E f

σ σ σ

 ∂
= = − 

∂ 
x θ  (25) 

 
( ) ( )

2
0 1

2 2

ln ; 1
vec

vec( )
X m

c p

f
E

σ σ
−

 ∂ 
= = − 

∂ ∂  

x θ
A Σ

Σ
. (26) 

B. Evaluation of 
0θ

B  

0θ
B  can be decomposed in the following blocks: 

 
0

2

cT

T

c B
σ

 
=  

 

Σ

θ

B B
B T T

B
. (27) 

As before, following [13], we get: 

 ( ) ( )1 1 1 11 1
vec vec

2 2

T λ

λ λ
− − − −−

= + ⊗
− −Σ

B Σ Σ Σ Σ  (28) 

 
( )

2

2

0

2 4

ln ; ( 1)

( 2)
X m

p

f N N
B E

σ

λ

σ σ λ

 ∂  + − 
= =  

∂ −   

x θ
, (29) 

10 0
2 2

ln ( ; ) ln ( ; ) 1
vec( )

vec( ) ( 2)
X m X m

c p

f f N
E

λ

σ σ λ
− ∂ ∂ + −

= ⋅ = 
∂ ∂ − 

x θ x θ
B Σ

Σ
 

  (30) 

C. Definition of the matrix U 

The linear constraint tr(Σ)=N can be rewritten as: 

 ( ) vecs( ) 0
ii I

f N
∈

= − =∑θ Σ , (31) 

where I is the set of the indices of the diagonal entries of Σ 
that can be explicitly described as: 

 
( 1)( 2)

1 ( 1) , 1,...,
2

j j
I i i N j j N

 − −
= = + − − = 
 

. (32) 

Following [10], we define the (l+1)-dim gradient vector as: 

 
vecs( )( )

( ) 0 0
vecs( )

i Ti I
IT T

f
f ∈

 ∂∂
 ∇ = = =   ∂ ∂  

∑ Σθ
θ 1

θ Σ
, (33) 

where 1I is a l-dim column vector defined as: 

 [ ]
1

0 otherwiseI i

i I∈
= 


1 . (34) 

The gradient ( )f∇ θ  has clearly full row rank and hence 
there exists a matrix ( 1)l l+ ×∈U �  whose columns form an 
orthonormal basis for the null space of ( )f∇ θ , that is 

( )f∇ =θ U 0  where UTU=I. Finally, it can be noted that the 
matrix U can be obtained by evaluating the orthonormal 
eigenvectors associated to the zero eigenvalue of ( )f∇ θ . 

VI. PERFORMANCE ANALYSIS 

In this section we compare the performance of the CMML 
estimator with the CMCRB for the estimation of the scatter 
matrix Σ  and the power 2σ . To this end, we define the 
following performance indices for the estimation accuracy: 

 { }ˆ
ˆ ˆvecs( )vecs( )

CMML

T

CMML CMML
F

Eε − −
Σ

Σ Σ Σ Σ� , (35) 

 ( ) ( ){ }22 2 2ˆ ˆ
CMML CMML

MSE Eσ σ σ−� . (36) 

Correspondingly, the following performance bounds are 
calculated and plotted: 

 CMCRB CCRBCMCRB( ) , CCRB( ) , CMCRB( )
F F

ε ε σΣ Σ� � , 

where the CCRB( )Σ  is the first “top-left” submatrix of the 
Cramér-Rao bound on the estimation of the true parameter 
vector [vecs( ) ]T Tλ η=θ Σ  under matched condition (i.e. 
when the assumed distribution is itself a complex t-distribution) 
evaluated in [14]. The comparison between the CMML 
estimator and the CMCRB on one hand and the (matched) 
CCRB on the other hand allows us to quantify the loss in 
estimation accuracy due to the mismatch between the true and 
the assumed models. The true scatter matrix is assumed to be of 

the form: ,[ ] i j

i j
ρ

−
=Σ , where ρ  is the one-lag correlation 

coefficient. To calculate the performance of the CMML 
estimators, we run 104 Monte Carlo trials. The simulation 
results have been organized as follows: 

1) Estimation accuracy as function of the number M of 
available data vectors (Figs. 1 and 2). The simulation 
parameters are: ρ=0.8, N=16, λ=3, η=1. 

2) Estimation accuracy as function of the shape parameter 
λ (Figs. 3 and 4). The simulation parameters are: ρ=0.8, N=16, 
M=10N, η=1. 

From simulated analysis on the CMML estimator, it can be 
noted that the loss in estimation accuracy due to the mismatch 
is not too high and seems to be always bounded, except for the 
case of extremely heavy-tailed data, i.e. when λ is close to 0 
(see Fig. 3). In particular, when λ→0, the CMCRB rapidly 
increases while the CCRB is quite independent of the value of 
the shape parameter. On the other hand, when λ→+∞, i.e. when 
the t-distribution tends to the Normal one, the CMCRB and the 
CCRB tend to coincide, as expected. It can be noted from Fig.1 
that ˆ

CMML

ε
Σ

 can goes below CMCRBε . This is probably due to the 

presence of a slight bias in the CMML estimation of the scatter 
matrix. The CMML for the estimation of the power σ2 results to 
be an efficient estimator w.r.t. the CMCRB. 

VII. CONCLUSIONS 

In some operative situations, one could be forced to assume 
a tractable data model instead of the true (and possibly 
unknown) one. In this paper, we have proved that, in the 
presence of t-distributed data, the CMML estimator based on 
the simpler Normal model converges almost surely to the true 
scatter matrix and to the true data power, so it can be applied 
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for inference problems that require the knowledge of these two 
quantities, e.g. radar detection problems. Moreover, we have 
shown that the CMML estimator is an efficient estimator w.r.t. 
the CMCRB. Future works aim at generalize this results among 
the CES class and to investigate the impact of the mismatch on 
the detection performance. 
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