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Abstract—We consider the adaptive detection problem in
colored Gaussian noise with unknown persymmetric covariance
matrix in a multiple-input-multiple-output (MIMO) radar with
spatially dispersed antennas. To this end, a set of secondary data
for each transmit-receive pair is assumed to be available. MIMO
versions of the persymmetric generalized likelihood ratio test
(MIMO-PGLRT) detector and the persymmetric sampler matrix
inversion (MIMO-PSMI) detector are proposed. Compared to
the MIMO-PGLRT detector, the MIMO-PSMI detector has a
simple form and is computationally more efficient. Numerical
examples are provided to demonstrate that the proposed two
detection algorithms can significantly alleviate the requirement
of the amount of secondary data, and allow for a noticeable
improvement in detection performance.

Index Terms—Adaptive detection, multiple-input-multiple-
output (MIMO) radar, persymmetry.

I. INTRODUCTION

HE paradigm of multiple-input multiple-output (MIMO)

which originated in communications is more and more
widely applied to radars [1]. In general, MIMO radar falls into
two classes according to the configuration of its antennas: one
with co-located antennas [2], [3] and the other with widely
distributed antennas [4], [5], [6]. We restrict ourselves to
the second MIMO radar configuration, which for brevity is
referred to as MIMO radar in the following.

In [7], several temporal coherent adaptive detectors are
proposed to deal with the problem of target detection in MIMO
radar. A set of training data is employed for each transmit-
receive pair to estimate the unknown clutter covariance matrix.
In [8], a MIMO version of the generalized likelihood ratio
test (MIMO-GLRT) detector, which is an extension of the
detector in [7, eq. (19)], is developed, and its false alarm rate is
obtained in closed form. It is shown that the number of training
data has a great impact on the detection performance of the
MIMO radar, and the detection performance is significantly
degraded when the number of training data is small. In many
practical scenarios, it is difficult to collect a large number of
independent identically distributed target-free training data due
to many factors such as variations in terrain [9] and interfering
targets [10]. Therefore, it is interesting to investigate how to
achieve satisfactory detection performance when the amount
of training data is limited.
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Some prior knowledge about the structure of clutter covari-
ance matrix (e.g. persymmeric structure) may be exploited to
alleviate the requirement of the amount of training data [11].
In practical applications, the clutter covariance matrix has a
Hermitian persymmetric (also called centrohermitian) form,
when a detection system is equipped with a symmetrically
spaced linear array [12, chap. 7] or symmetrically spaced pulse
trains [13]. Hermitian persymmetry has a property of doubly
symmetry, i.e., Hermitian about its principal diagonal and per-
symmetric about its cross diagonal. Unless otherwise stated,
“persymmetric” always denotes “Hermitian persymmetric” for
brevity in the following.

The investigation on the persymmetric structure of clutter
covariance matrix can be traced to Nitzberg’s paper [14],
where the maximum likelihood (ML) estimate of the per-
symmetric covariance matrix was obtained. Using this ML
estimate, Cai and Wang developed two persymmetric detection
algorithms, i.e., the persymmetric multiband generalized like-
lihood ratio test (GLRT) algorithm [13] and the persymmetric
sample matrix inversion (SMI) algorithm [15]. In recent years,
several other detection algorithms have been proposed with
a-priori information on the persymmetric structure of the
clutter covariance (see [16], [17], [18], [19], [20]). All these
persmmetric detection algorithms mentioned above validate
the fact that an obvious gain in detection performance can
be obtained by exploiting persymmetric structures in the
clutter covariance, especially when the amount of training data
available is limited.

In this study, we examine the adaptive detection problem
in the presence of colored Gaussian noise with unknown
covariance matrix in a distributed MIMO radar, by using
persymmetric structures in the received data. The unknown
noise covariance matrix for each transmit-receive pair is es-
timated from a set of secondary data. A MIMO version of
the persymmetric GLRT detector, referred to as the MIMO-
PGLRT detector, is proposed. Moreover, we develop a MIMO
version of the persymmetric SMI detector, referred to as the
MIMO-PSMI detector, which is simpler than the former detec-
tor, and thus has lower computational complexity. Simulation
results reveal that compared to the conventional MIMO-GLRT
detector which do not use the persymmetric structure, both
of the proposed detectors obtain significant gains in detection
performance, especially when the amount of secondary data is
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limited. Additionally, the MIMO-PGLRT detector outperforms
the MIMO-PSMI detector, even though a higher computa-
tional burden is incurred. However, the performance difference
among these four MIMO detectors is negligible when the
amount of training data is adequate.

Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters. Superscripts ()7, (-)* and (-)! denote
transpose, complex conjugate and complex conjugate trans-
pose, respectively. The notation ~ means “is distributed as,”
and CN denotes a circularly symmetric, complex Gaussian
distribution. I, stands for a p-dimensional identity matrix. | - |
represents the modulus of a complex number and j = /—1.
det(-) and tr(-) denote the determinant and trace of a matrix,
respectively. Re(-) and Jm(-) represent the real and imaginary
parts of a complex quantity, respectively.

II. SIGNAL MODEL

In this section, a signal model for MIMO radar with widely
distributed antennas is presented. Suppose that a MIMO radar
consists of M transmit antennas and N receive antennas which
are geographically dispersed. The total number of transmit-
receive paths available is V' = MN. Assume that the tth
transmitter sends (; pulses and a target to be detected does
not leave the cell under test during these pulses. We further
impose the standard assumption that all transmit waveforms
are orthogonal to each other, and each receiver uses a bank
of M matched filters corresponding to the M orthogonal
waveforms.

Sampled at the pulse rate via slow-time sampling, the signal
received by the rth receive antenna due to the transmission
from the tth transmit antenna, which is usually called test data
(primary data), can be expressed as a @; x 1 vector, i.e.,

Xpt = QrtSrt + n; ¢, (1)

where s,.; € CQ:*1 denotes a known Q; x 1 steering vector
for the target relative to the ¢th transmitter and rth receiver
pair [5]; a,; € C is a deterministic but unknown complex
scalar accounting for the target reflectivity and the channel
propagation effects in the ¢th transmitter and rth receiver pair;
the noise n,.; ~ CN(0, R, ), where R, ; is a positive definite
covariance matrix of dimension Q; X Q.

These primary data vector {x,.} can be assumed inde-
pendent of each other due to the widely distributed antennas
in the MIMO radar. Notice that in the above model (1),
these steering vectors s,.;’s are not necessarily identical even
though they describe the same target, since the relative position
and velocity of the target with respect to different widely
dispersed radars may be distinct. In addition, the covariance
matrices R, :’s are also not constrained to be the same,
because the statistical properties of the noise may be unique
for each transmit-receive perspective. We further assume that
Q¢ > 1,t = 1,2,..., M, such that coherent processing for
each test data is possible. Notice that Q;, t = 1,2,..., M are
not constrained to be identical, which means that the numbers
of the pulses transmitted by different transmit antennas may
be distinct. Another standard assumption we impose is that

for each test data vector x,,, there exists a set of training
data (secondary data) free of target signal components, i.e.,
{yri(k), b = 1,2,..., K, 4|lyrt(k) ~ CN(0,R,;)}. Note
that the numbers of secondary data vectors K, ; are not con-
strained to be the same. Suppose further that these secondary
data vectors are independent of each other and of the primary
data vectors.

The detection problem considered herein involve structured
R, ; and s, ;. Specifically, it is supposed that each of the R, ;’s
has the persymmetric property, i.e., R,; = JR;;J where J
is a permutation matrix with unit anti-diagonal elements and
zeros elsewhere [19]. In addition, the steering vector is also
assumed to be a persymmetric one satisfying s,; = Js; ;.
The above assumption on the structures of R, ; and s, is
valid when each antenna in the MIMO radar uses a pulse
train symmetrically spaced with respect to its mid time delay
for temporal domain processing. In the common case of pulse
trains with uniform spacing, the steering vector s,; has the
form:

_ (Q1—1)27fr ¢ _ 3
Spp = |e’ 2 TS LRI

F (Qi—1)27fr ¢
A N A

; 2

where fm defined similarly as [5, eq. (2)] is the normalized
target Doppler shift corresponding to the ¢th transmitter and
rth receiver pair.

Let the null hypothesis (Hp) be such that the primary data
is free of the target signal and the alternative hypothesis (H)
be such that the primary data contains the target signal. Hence,
the detection problem is to decide between the null hypothesis
and the alternative one:

HO : Xt CN(07 Rr,t) (3a)
yri(k) ~CN(0,R, ;)
and
o - Xyt CN(ar,t Sr,taRr,t) (3b)
yri(k) ~CN(0,R, ;)

fort=1,2,..., M, r=1,2,--- ,N,and k=1,2,..., K, ;.
In [7], [8], MIMO detection algorithms were developed with-
out using any prior knowledge about the special structure
of the noise covariance matrix. In the sequel, two adaptive
detectors are proposed by exploiting the persymmetric struc-
tures of R, ; and s, ;. It will be seen that the exploitation of
persrmmetry can bring in a noticeable detection gain.

III. PERSYMMETRIC ADAPTIVE DETECTION

A. MIMO-PGLRT Detector

Due to the unknown parameters a,; and R, ;, the Neyman-
Pearson criterion can not be employed. According to the
GLRT, a practical detector can be obtained by replacing all the
unknown parameters with their ML estimates, i.e., the detector
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is obtained by

max{ Qrt,

M, r=1,2,..N} f (X|H1) S

w2y S X[Ho)

“4)
where )\ is the detection threshold, f(-) denotes probability
density function (PDF), and X = [Xj1,...,Xn M| with
X'r,t = [Xr,ta y,,-ﬂg(l)7 YT,t(2); e Yt (KT,t)]- Due to the in-
dependent assumption on these test data vectors, the PDF of
X under H,; (¢ = 0,1) can be represented as

HHert T7t|H¢1)7 q=

r=1t=1
:f'r',t.q

R, [t=12,...

Mmax(R, ,|t=1,2,...,

F(X|Hy) 0,1,

where
K, +1

1 _
fritg= {WQtdet(R”) exp [*tf(Rr,tlTr,t,q)} } (6)

with

Ko
1 :
— T
mt,q — Kﬁt 4 1 ]; y""7t(k)y’l’,t(k)
+ (Xr,t - qar,t Sr,t)(xr,t - qar,t Sr,t)T] . (7)
Define
1
Ry =5 Y {veayL k) + Iy Ryl (0] T} ®)
k=1
1
X5, = B (T4 DRe(xy¢) — (T = T)Im(x,)] )
1
Xp, = 3 [(I—J)Re(xre) + T+ T)Im(x,4)] (10)
and
Xoi = X5, X704 (11)
As derived in Appendix A, the detector is given by
N M Ko+l g,
HH<1_ ) 2 Xo, (12)
r=1t=1 Ho
where
P gi,tﬁ;,tlxr,t(b + Xi,tf{:,::lxr,t) 1X Rr i Srt
rit =

éi,tf{:, tl Sr.t

13)
with §,; = Re(s,+) — IJm(s,,), and f{m = iﬁe(f{,.,t) +
ij(f{r,t). Here, (12) is referred to as the MIMO-PGLRT
detector.

Notice that there exists a significant difference between the
detector (13) developed in [13] and the MIMO-PGLRT detec-
tor (12) derived here. In [13], the noise covariance matrices
at multiple bands are assumed to be identical, whereas in
our study the noise covariance matrices at different transmit-
receive pairs may be distinct.

B. MIMO-PSMI Detector

Here, an alternative solution to the detection problem (3) is
proposed, which has a lower computational burden than the
MIMO-PGLRT detector. To this end, an approach similar to
that in [15] is employed. More specifically, for each transmit-
receive pair we use the following test statistic:

(14)

Ert = |Wi,txi,t‘2 + |W7J[,txg,t‘2a

where x7, and x7, are defined in (9) and (10), respectively,
and the weight vector w,.; is given by

1~
thsrt
Wit

=t (15)
(81 Ry f8,0)1/2

Jointly processing the independent data received by all the
transmit-receive pairs, we have the following decision rule:

N M < 1~
T R,tX, tXTtR S,At H,

=33 s - Yy B

=1 t—1 PR — 7t Srit Ho

(16)
where £ is the detection threshold. Here, (16) is referred to as
the MIMO-PSMI detector.

Note that = in (16) is different from the test statistic in [15,
eq. (13)], since the weight vectors w,.; in (15) are distinct for
different transmit-receive pairs, whereas the weight vectors in
[15, eq. (13)] are all the same. Compared with the MIMO-
PGLRT detector in (12), the MIMO-PSMI detector in (16)
has a simpler structure. More specifically, (16) does not need
to compute the term (I + XIth_ 1X,;)"!, and thus is
computationally more efficient.

IV. SIMULATIONS RESULTS

In this section, numerical simulations are conducted to
validate the above theoretical analysis and illustrate the per-
formance of the proposed two detectors. For simplicity, we
consider a MIMO radar comprised of two transmit antennas
and two receive antennas (i.e., M = N = 2), and each
transmit antenna sends nine coherent pulses with equal spacing
(ie., @1 = Q2 = 9). The steering vector s,; has the
form as (2). Suppose further that the normalized Doppler
shifts of the target are 0.1, 0.2, 0.3 and 0.4 for the (1,1),
(1,2), (2,1) and (2,2) transmit-receive pairs, respectively. The
(i,7)th element of the noise covariance matrix is chosen to
be [R];; = 020.95/°~7!, where o2 represents the noise power.
Without loss of generality, each transmit-receive pair has the
same number of secondary data which is uniformly denoted
by K. a,.’s are also supposed to be the same, and then can
be uniformly denoted by a. The signal-to-noise ratio (SNR) is
defined by SNR. = 10log, |al?/a>.

In Fig. 1, performance comparisons among the proposed
detectors and the MIMO-GLRT detector developed in [8] are
presented with different K. It is shown that the performance
gains of the MIMO-PGLRT detector and the MIMO-PSMI
detector with respect to the MIMO-GLRT detector in the case
of K = 10 are about 7.3 dB and 5.8 dB, respectively, when the
detection probability is 0.8. In addition, the more the number
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Fig. 1.  Performance comparisons between three detectors with different
amount of secondary data for fixed Ppa = 10~3. The dashed, solid, and
dotted lines indicate detection probabilities obtained with Monte Carlo sim-
ulations for the MIMO-GLRT, MIMO-PSMI, and MIMO-PGLRT detectors,
respectively.

of the secondary data, the better the performance. In particular,
the performance difference between these detectors can be
negligible in the case of sufficient secondary data (for instance,
K = 64 in this example). This is due to the fact that using
sufficient secondary data, one can obtain a high accuracy in
the noise covariance matrix estimate, even without a-priori
information on the persymmetric structures.

V. CONCLUSION

In this paper, we propose two persymmetric detectors (i.e.,
MIMO-PGLRT and MIMO-PSMI) in a distributed MIMO
radar by exploiting persymmetric structures in received sig-
nals. The MIMO-PSMI detector has lower computational
burden than the MIMO-PGLRT detector. Simulations results
show that with a limited amount of secondary data, the two
proposed detectors significantly outperform the conventional
MIMO-GLRT detector which do not exploit the persymmetric
structure, and the MIMO-PGLRT detector performs better than
the MIMO-PSMI detector. When the amount of secondary
data is sufficient, all detectors considered in this paper achieve
similar detection performance.

APPENDIX A
A DERIVATION OF MIMO-PGLRT DETECTOR

Since the random variables X, ; are independent, the max-
imization of the left-hand side of (4) can be performed term
by term. Using (5), we can rewrite (4) as

ﬁ ﬁ MaX{a,, R} fre1 By AD)
Polimn | MAX(R,,) fr P '
E
Exploiting the persymmetric structure of R,.;, we have
tr(R, [} Tryq) = tr(R,; JT;, J). (A2)

Then,
(R Trrg) = r(R{ Trt ), (A.3)
where
Trtg=(Triq+ JTji’t’qJ)/Q. (A4
Using (7), ’i‘r’t,q can be rewritten as [13, eq. (A13)]
. 1 R . . R X
Tr,t,q - m [Rr,t + (Xr,t - qsr,tar,t)(xr,t - qsr,tar,t)T] 5
(A.5)
where &, ; = [Re(ar,t), 7Tm(ar)],
1 KT,t
Rei =5 > {veal0)yl(0) + IRyl (0T} (A6)
k=1
and
Xt = X7, %74 (A7)

with X7, = (Xpt + Jx;:t)/2 and X7, = (Xpt — Jx:i,t)/Q.

According to [14], the ML estimates of R, ; under Hy
and H; are Tr,t,o and TT,tJ, respectively. Using these ML
estimates, we can write T, ; defined in (A.1) as

~ Ky ++1
det(TM,o)

T, = S
min{ém} det(T,.,tJ)
It follows from (A.5) that

(A.8)

det(Tr’t’l) = m det(RT’t) det[IQ
T,

+(X7‘,t - Sr,tér,t)TR;tl (Xr,t - sr,tér,tﬁb-g)

It is straightforward that the value of &,; minimizing the
denominator of (A.8) is (sltf{;tlsr7t)*1si7tf{;thr7t. Substi-
tuting this ML estimate into (A.8) and after some algebraic
manipulations, we can obtain

1 K, :+1
YT, i=[—— , A.10
=(=5-) (A10)
where
o, st Ry Ko (I + XE R X)X Ry s
rt — S — :
Si,th,tlSTﬂf
(A.11)
Define two unitary matrices
1 1 0

D= 5[(I+J)+3(I—J)] and V = 0 —y| (A.12)

Then, ®,; in (A.11) can be rewritten in the real domain as

tR;,tlér-,t
R . ~ . (A13)
where AXT:t = DXT,tVT, Rr,t = DRntDT = ‘ﬁe(RT’t) +

JIm(R,.+) and §,; = Ds,; = Re(s,¢) — Im(s, ). Further-
more, X, ; can be expressed as (11).

sl RX, (L + X! R, (X, )1 X]

T!

o, = d
! 5l R s
et Ot
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