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Abstract—Source separation using an ad hoc microphone
array can be useful for enhancing speech in such applica-
tions as teleconference systems without the need to prepare
special devices. However, the positions of the sources (and the
microphones when using an ad hoc microphone array) can
change during recording, thus violating the commonly made
assumption in many source separation algorithms that the mixing
system is time-invariant. This paper proposes an extension of the
multichannel nonnegative matrix factorization (NMF) approach
to deal with the problem of underdetermined source separation
in time-variant reverberant environments. The proposed method
models the mixing system as a non-negative convolutive mixture
based on the concept of a “semi-time-variant system” to handle
the reverberation in a room as well allowing for relatively small
changes in the source/microphone positions. It also models the
power spectrogram of each sound source using the convolutive
NMF model to consider the local dynamics of speech.

I. INTRODUCTION

An ad hoc microphone array is a microphone array that
uses built-in microphones in portable devices such as laptops
and smartphones as spatially distributed sensors in an ad hoc
fashion. It is particularly noteworthy in that it allows a flexible
and convenient way to acquire audio data compared with
traditional microphone arrays, which usually require special
devices. Since a traditional microphone array is typically
arranged so that the built-in microphones are located close
to each other, the interchannel difference in arrival time (or
phase difference) of each sound source provides an important
clue in such applications as sound source localization and
source separation. By contrast, since an ad hoc microphone
array allows each microphone to be spatially distributed, the
interchannel level difference of each sound source can also be
a useful clue. Motivated by this, this paper proposes a source
separation method specifically tailored for ad hoc microphone
arrays that relies on the interchannel level difference of each
sound source.

The problem of separating the signals of individual sound
sources from the signals observed with a microphone array can
be considered an inverse problem. In an underdetermined case
where the sources outnumber the microphones, this inverse
problem generally has an infinite number of solutions. Thus,

some reasonable assumption is usually needed to limit the
range of possible solutions. In recent years, multichannel
extensions of non-negative matrix factorization (NMF) have
attracted particular attention after being proposed as a powerful
approach for underdetermined source separation [1]–[4]. Note
that multichannel extensions of NMF for an overdetermined
case have also been proposed with notable success [6], [7].
NMF was originally applied to monaural source separation
where the magnitude (or power) spectrogram of a mixture sig-
nal, interpreted as a non-negative matrix, is factorized into the
product of two non-negative matrices. This can be interpreted
as approximating the observed spectra at each time frame as a
linear sum of basis spectra scaled by time-varying amplitudes,
and amounts to decomposing the observed spectrogram into
the sum of low rank spectrograms. Multichannel NMF is an
extension of NMF to a multichannel input, which assumes the
power spectrogram of each underlying sound source to have
a low rank structure.

While most of these approaches are formulated on the
assumption that the mixing system is time-invariant, this
assumption does not necessarily hold when the relative posi-
tions of sources and microphones are likely to change during
recording. In such situations, methods based on the time-
invariant mixing system do not work very satisfactorily.

This paper proposes an extension of the multichannel NMF
approach to deal with the problem of underdetermined source
separation in time-variant reverberant environments. The pro-
posed method models the mixing system as a non-negative
convolutive mixture based on the concept of the “semi-time-
variant system” to take account of the reverberation in a
room as well as to allow for relatively small changes in
the source/microphone positions. The method also models the
power spectrogram of each sound source using the convolutive
NMF model [13] to take account of the local dynamics in the
time-frequency components of speech.
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II. PROPOSED MODEL

A. Convolutive mixture in time-frequency domain

We start by describing the mixing system with I sources and
J microphones as a convolutive mixture in the time-frequency
domain. When the transfer systems between the sources and
the microphones are linear time-invariant and their impulse
responses are sufficiently shorter than the window length of the
short-time Fourier transform (STFT), the signals obtained by
the microphones can be represented as an instantaneous mix-
ture of source signals in the STFT domain, which is adopted
in many conventional BSS methods including multichannel
NMF [1]–[4]. However, when reverberation comes into play,
the length of the room impulse responses can be longer than
the STFT window. In such cases, the signals observed at the
microphones can be well approximated by the convolutive
mixture model [8], [9]

yk,l =
∑
i

∑
n

ai,k,nsi,k,l−n, (1)

where i, k denote the source and frequency indices and l, n
denote the time frame indices, respectively. yk,l ∈ CJ is a
vector consisting of the complex time-frequency components
observed at the J microphones. We hereafter use j to denote
the microphone index. ai,k,n represents the steering vector
of each source, which corresponds to the contributions of
the direct component (when n = 0) and the reverberant
components arriving at the microphones with a time delay
of n frames (when n ̸= 0). si,k,l represents the complex time-
frequency component of source i.

B. Nonnegative tensor double deconvolution

In a general scenario, the positions of the sources (and
the microphones in an ad-hoc microphone array scenario)
can change during recording. To handle such situations, we
must consider a time-variant system. To achieve a source
separation algorithm that is robust against changes in the
acoustic environment, one possible approach involves treating
a time-variant factor as a latent variable to be marginalized out
so that the algorithm becomes less sensitive to that factor. [11]
proposes a speech dereverberation method robust to speaker’s
movements that follows this idea. This idea is also adopted in
a blind source separation method for an ad hoc microphone
array [12], which is designed to be robust against the sampling
rate mismatch of the microphones of the array. The proposed
method uses a similar approach to develop a robust source
separation algorithm that is designed to be less sensitive to the
movements of the microphones and sources. Specifically, when
the positions of sources and microphones are time-variant,
i.e., the steering vector ai,k,n depends on time l, the mixing
process in (1) is described as a time-variant system

yk,l =
∑
i

∑
n

ai,k,n,lsi,k,l−n. (2)

We assume that the time-frequency component of each source
independently follows a complex Gaussian distribution, as in
[15], i.e., si,k,l ∼ NC(0, Pi,k,l) where Pi,k,l is the power

spectrogram of source i. Thus, the time-frequency components
observed at the J microphones follow

yk,l ∼ NC

(
0,
∑
i

∑
n

Pi,k,l−nai,k,n,la
H
i,k,n,l

)
. (3)

Here, we decompose the time-variant steering vector ai,k,n,l

into its magnitude and phase parts

ai,k,n,l =

|a1,i,k,n,l| 0
. . .

0 |aJ,i,k,n,l|


e

jϕ1,i,k,n,l

...
ejϕJ,i,k,n,l

 . (4)

We assume that the magnitude part of the steering vector is less
sensitive to the changes in the acoustic environment made for
instance by a slight movement of the microphones/sources and
assume a mixing system in which |aJ,i,k,n,l| is time-invariant
whereas ϕj,i,k,n,l is time-variant. We hereafter refer to this
type of mixture process as semi-time-variant system. Thus, by
assuming |aj,i,k,n,l| = Aj,i,k,n, (4) can be rewritten as

ai,k,n,l =

A1,i,k,n 0
. . .

0 AJ,i,k,n


︸ ︷︷ ︸

Ai,k,n

e
jϕ1,i,k,n,l

...
ejϕJ,i,k,n,l


︸ ︷︷ ︸

ψi,k,n,l

. (5)

By substituting Ai,k,nψi,k,n,l for ai,k,n,l in (3), we obtain the
following distribution

yk,l ∼ NC

(
0,
∑
i,n

Pi,k,l−nAi,k,nψi,k,n,lψ
H
i,k,n,lA

H
i,k,n

)
. (6)

While the phase part of the steering vector is one of the
most useful clues to source separation for traditional arrays
with spatially proximate microphones, the magnitude part of
the steering vector, which can be seen as the interchannel level
differences between the direct and reverberant components
of each source, can also be a useful clue when it comes
to an ad hoc array with spatially distributed microphones
(imagine a situation where each microphone is located very
close to a different speaker). Here, we instead consider the
phase part of the steering vector to be a nuisance parameter
since it can vary sensitively according to the movements of
the microphones/sources. Hence, we treat ϕj,i,k,n,l as a latent
variable to be marginalized out and make the following two
assumptions:

• ϕj,i,k,n,l and ϕj′,i,k,n,l (j ̸= j′ or l ̸= l′) are statistically
independent.

• ϕj,i,k,n,l follows a uniform distribution in [0, 2π).
By marginalizing out ϕj,i,k,n,l, E[ψi,k,n,lψ

H
i,k,n,l] becomes an

identity matrix. Thus, we obtain the following distribution

yj,k,l ∼ NC

(
0,
∑
i

∑
n

Pi,k,l−nA
2
j,i,k,n

)
. (7)

Until now, no assumptions have been made as regards Pi =
(Pi,k,l)K×L. The conventional multichannel NMF [1]–[3]
models the power spectrogram Pi,k,l as a product of two non-
negative matrices. This can be interpreted as representing the
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power spectrum of the source at each time frame as the non-
negative combination of spectrum templates. Although this
assumption may be relatively accurate for musical instrument
sounds, it may be inadequate when it comes to speech since
speech is characterized not only by the instantaneous spec-
tra but also by the continuous transitions of these spectra
over time. Therefore, we consider it reasonable to treat the
concatenation of the spectra of multiple frames rather than
a single-frame spectrum as a basic element constituting the
entire spectrogram of speech. Motivated by this, we employ
the convolutive NMF model introduced in [13], [14] to model
the power spectrogram of each source. Namely, the power
spectrogram of each source is modeled as a convolution over
time of spectrogram templates and the corresponding temporal
activation functions

Pi,k,l =
∑
m

T−1∑
τ=0

Wi,k,m,τHi,m,l−τ , (8)

where m and τ denote the indices of the spectrogram templates
and time frame, respectively. Wi,k,m,τ and Hi,m,l represent
the ith spectrogram template and the corresponding temporal
activation function. Note that this model reduces to the regular
NMF model when T = 1.

Our proposed model involves two convolutions, one de-
scribing the reverberation process, and the other describing
the power spectrogram model. Hence, the source separation
problem based on the proposed model is formulated as a
double deconvolution problem. We thus call our proposed
method Non-negative Tensor Double Deconvolution, (NTDD).

III. PARAMETER ESTIMATION

From (7), the negative log-likelihood function of the un-
known parameters is given by

CML =
∑
j,k,l

logNC

(
yj,k,l|0,

∑
i,n

Pi,k,l−nA
2
i,j,k,n

)
c
=
∑
j,k,l

dIS

(
|yj,k,l|2|

∑
i,n

Pi,k,l−nA
2
i,j,k,n

)
, (9)

where c
= denotes equality up to constant terms. dIS(y|x)

denotes the Itakura-Saito divergence between x and y [15].
Therefore, the parameter estimation using the maximum
likelihood estimation amounts to the minimization of the
element-wise Itakura-Saito divergence between the obtained
power spectrogram Yj,k,l and the modeled power spec-
trogram Xj,k,l =

∑
i,n Pi,k,l−nAi,j,k,n where Pi,k,l =∑

m

∑
τ Wi,k,m,τHi,m,l−τ .

Seen from a model-fitting perspective, it would be natural
and interesting to consider employing divergence measures
other than the Itakura-Saito divergence. Here, we generalize
the divergence measure using the β divergence, which involves
the Itakura-Saito divergence as a special case, and use the
majorization-minimization (MM) approach to derive an itera-
tive algorithm for finding the optimal parameters that minimize
the β divergence between Yj,k,l and Xj,k,l.

We follow the same idea proposed in [17], [18] to construct
an auxiliary function by bounding the convex term of the
objective function from above using Jensen’s inequality and
bounding the concave term from above using a tangent line.
Owing to space limitations, here we only derive an update rule
for the magnitude part of the steering vector, namely Aj,i,k,n.

We can write the objective function as

J(Θ) =
1

β(β − 1)

∑
j,k,l

Y β
j,k,l +

1

β

∑
j,k,l

(∑
i,n

Aj,i,k,nPi,k,l−n

)β
− 1

β − 1

∑
j,k,l

Yj,k,l

(∑
i,n

Aj,i,k,nPi,k,l−n

)β−1

, (10)

where Θ denotes the set of the parameters. Here, both the
second and third terms of Eq. (10) involve the form 1

αx
α with

x =
∑

i,n Aj,i,k,nPi,k,l−n and α = β, β−1. Note that 1
αx

α is
concave in x on the interval [0,∞) when α ≥ 1 and convex
when α < 1. When 1

αx
α is convex, we can apply Jensen’s

inequality to build an upper bound function

1

α
xα ≤ 1

α

∑
i,n

λj,k,l,i,n

(
Aj,i,k,nPi,k,l−n

λj,k,l,i,n

)α

, (11)

where λj,k,l,i,n ≥ 0 and
∑

i,n λj,k,l,i,n = 1. Equality holds
when λj,k,l,i,n = Aj,i,k,nPi,k,l−n/

∑
i,n′ Aj,i,k,n′Pi,k,l−n′ .

Next, when 1
αx

α is concave, we can use the fact that a concave
function lies below its tangent line to build an upper bound
function

1

α
xα ≤ Zα−1

j,k,l

(∑
i,n

Aj,i,k,nPi,k,l−n − Zj,k,l

)
+

Zα
j,k,l

α
, (12)

where x = Zj,k,l denotes the point of tangency. Equality
holds when Zj,k,l =

∑
i,n Aj,i,k,nPi,k,l−n. For simplicity of

notation, we denote the right-hand sides of Eqs. (11) and
(12) by Q

(α)
j,k,l(Θ, ϑ) and R

(α)
j,k,l(Θ, ϑ), respectively, where ϑ

denotes the set of auxiliary variables {λj,k,l,i,n} and {Zj,k,l}.
By using R

(α)
j,k,l(Θ, ϑ) and Q

(α)
j,k,l(Θ, ϑ), we arrive at the

following auxiliary function

J+(Θ, ϑ) =
1

β(β − 1)

∑
j,k,l

Y β
j,k,l +

∑
j,k,l

S
(β)
j,k,l(Θ, ϑ), (13)

where

S
(β)
j,k,l =


R

(β)
j,k,l(Θ, ϑ)− Yj,k,lQ

(β−1)
j,k,l (Θ, ϑ) β < 1

Q
(β)
j,k,l(Θ, ϑ)− Yj,k,lQ

(β−1)
j,k,l (Θ, ϑ) 1 ≤ β ≤ 2

Q
(β)
j,k,l(Θ, ϑ)− Yj,k,lR

(β−1)
j,k,l (Θ, ϑ) β > 2

.

(14)

According to the principle of the auxiliary function method,
we can show that iteratively minimizing this function with
respect to Θ and ϑ does not increase Eq. (10). The update
equation for Aj,i,k,n can thus be obtained as

Aj,i,k,n ← Aj,i,k,n

(∑
l Yj,k,lX

β−2
j,k,lPi,k,l−n∑

l X
β−1
j,k,lPi,k,l−n

)φ(β)

, (15)
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Fig. 1. Room configuration for numerical simulation

where φ(β) is defined as

φ(β) =


1/(2− β) (β < 1)

1 (1 ≤ β ≤ 2)

1/(β − 1) (2 < β)

. (16)

Similarly, the update rules for other parameters are given as

Wi,k,m,τ ←Wi,k,m,τ(∑
j,l,n Yj,k,lX

β−2
j,k,lAj,i,k,l−nHi,m,n−τ∑

j,l,n X
β−1
j,k,lAj,i,k,l−nHi,m,n−τ

)φ(β)

,

Hi,m,τ ← Hi,m,τ(∑
j,k,l,n Yj,k,lX

β−2
j,k,lAj,i,k,l−nWi,k,m,n−τ∑

j,k,l,n X
β−1
j,k,lAj,i,k,l−nWi,k,m,n−τ

)φ(β)

.

IV. EXPERIMENT

We conducted experiments on semi-blind source separation
in reverberant environments to confirm the effectiveness of our
proposed method. We used 45 utterances extracted from the
ATR Japanese speech database [19] as the source signals. The
number of speakers was 3, and the number of utterances per
speaker was 15. First, to verify the robustness of the proposed
method against reverberation, the proposed method was tested
on synthetic signals simulating signals recorded in a room
where the walls had different reflection coefficients. Second,
to verify the robustness against the change in the positions of
the microphones, the proposed method was tested on synthetic
signals simulating signals recorded by moving microphones.

There were three sources and two microphones. The im-
pulse responses were generated by using the image method.
Figure 1 shows the two-dimensional configuration of the
room. “•” (M1, M2) represent the microphone locations,
and “×” (S1∼S3) represent the source locations. The signals
of sources 1 and 2 were female utterances, and those of
source 3 were male utterances. We compared the proposed
method (Proposed) with the multichannel nonnegative matrix
factorization (MNMF) proposed in [3]. Since MNMF is based
on an anechoic (instantaneous) mixture model, its performance
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Fig. 2. SDR improvements of proposed method and MNMF with different
settings of the reflection coefficient of walls

is expected to degrade as the reverberation time of the test data
increases.

Out of the 15 utterances, one utterance was used for the
separation and the remaining 14 utterances were used for pre-
training the spectrogram templates of each source. We iterated
the separation task 15 times for each selected utterance. For
pre-training, convolutive NMF was used for the proposed
method whereas NMF was used for MNMF. The frame num-
ber of each spectrogram template for both convolutive NMF
and the proposed method was set experimentally at T = 4.
The numbers of the templates of NMF and convolutive NMF
were 40 and 20, respectively. The generalized KL divergence
was adopted as a divergence measure for pre-training with
NMF and convolutive NMF (where the parameter of the β
divergence was β = 1). The STFT window length was 32 ms,
and the shift length was 16 ms. We evaluated the source
separation performance using the improvement of the signal-
to-distortion ratio (SDR).

Figure 2 shows the SDR improvement results with the
different reflection coefficients of the walls obtained with
the proposed method and MNMF. The SDR improvements
were averaged over the SDR improvements of each source
on each microphone. For instance, the reverberation times
(RT60) were 620 ms, 720 ms and 1980 ms when the reflection
coefficient of the walls were 0.75, 0.8 and 0.95, respectively.
When the reflection coefficient of the walls was low, MNMF
outperformed the proposed method. On the other hand, the
proposed method outperformed MNMF as the reverberation
time increased.

Figure 3 shows the SDR improvement results with different
T settings. Note that when T = 1, the source spectrogram
model reduces to the regular NMF model. As shown by
the result, T = 4 outperformed T = 1, indicating that the
convolutive NMF model is more suitable for expressing speech
spectrograms than the regular NMF model.

Second, the proposed method was tested on synthetic signals
that simulated signals recorded by moving microphones. The
test signals were created by concatenating the signals recorded
by the microphones located as shown in Figure 1 and by those
moved a distance of ∆x m along the x-axis. The reflection
coefficient of the walls was set at 0.8. Figure 4 shows the
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SDR improvement results with different ∆x settings. The
degradation of the MNMF performance, which assumes the
time-invariance of the mixing system, was more significant
than that of the proposed method as ∆x increased. This
may imply that the phase part of the steering vector is more
sensitive to the microphone movements than the magnitude
part.
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Fig. 4. SDR improvements of proposed method and MNMF with different
∆x settings

V. CONCLUSION

This paper proposed an extension of the multichannel non-
negative matrix factorization (NMF) approach to deal with the
problem of underdetermined source separation in time-variant
reverberant environments tailored for an ad hoc microphone
array. The proposed method uses a non-negative convolutive
mixture model to take account of the reverberation in a room
as well as to allow for relatively small changes of the micro-
phone/source positions. The method also uses the convolutive
NMF model to express the power spectrogram of speech.
We verified through experiments that the proposed method is
robust against reverberation and microphone movements.
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