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ABSTRACT

Recent research works have shown the impact of the quan-

tization techniques on the performance of standard image

retrieval systems when datasets are compressed in a lossy

mode. In this work, we propose to design an efficient re-

trieval method well adapted to wavelet-based compressed

images. Our objective is to recover features of the original

image (herein the moments of the unquantized subbands)

directly from the quantized coefficients. To this end, we

propose to apply a dithered quantization technique satisfying

some specific conditions. Then, the estimated moments of the

wavelet subbands are used in an appropriate way to construct

the feature vectors of the database images. Experimental re-

sults show the interest of the proposed image retrieval method

compared to the state-of-the-art ones.

Index Terms— Content based image retrieval, com-

pressed images, dithering quantization, feature extraction.

1. INTRODUCTION

Content-Based Image Retrieval (CBIR) systems allow an ef-

fective access to target images among huge databases by de-

scribing appropriately the visual cues [1]. At this level, it is

worth to note that very often, images undergo a compression

due to limitations of storage and bandwidth resources. To this

end, it is used to resort to the popular image coding standards

JPEG [2] and JPEG2000 [3] respectively based on Discrete

Cosine Transform (DCT) and Wavelet Transform (WT). In

this case, the most reported WT-based CBIR methods consist

in directly extracting from the original wavelet coefficients

of the query and database (DB) images the salient descrip-

tors [4–7]. While most of these approaches are well adapted

for losslessly encoded images (i.e unquantized transformed

coefficients), a particular attention should be paid to the ef-

fect of the quantization in the context of lossy data compres-

sion. Indeed, some studies have shown that lossy compres-

sion adversely affects the image retrieval performance of sev-

eral popular CBIR techniques especially when the query and

database images (called also model images) are quantized at

A. Chaker has benefited from the EU Erasmus Mundus Alyssa pro-

gramme a mobility grant to conduct this work at I3S Lab.

very different bitrates [8–11]. Therefore, designing more effi-

cient indexing methods that account for the quantization step

becomes a real challenge. However, to the best of our knowl-

edge, only few works have addressed this problem [11–13].

More precisely, we have recently proposed to apply a recom-

pression strategy before proceeding to the feature extraction

step in order to impose on both query and DB images to have

similar qualities [11]. To this end, the wavelet coefficients of

the higher quality image are firstly reconstructed, and then re-

quantized at the bitrate of the lower quality image. It should

be noted that this method has been inspired from a similar re-

compression approach developed previously in the context of

DCT-based CBIR systems [12, 14]. In addition, we have re-

cently proposed a retrieval method that consists in estimating

the statistical parameters of the original wavelet coefficients

directly from the quantized ones according to the maximum

likelihood criterion [15]. The Laplacian distribution was re-

tained to model the wavelet coefficients distribution. Then,

the estimated statistical parameters of the different subbands

are selected as a feature.

The main objective of this paper is to improve the retrieval

performances of the aforementioned approaches by design-

ing salient features from the quantized subbands which are

robust to compression effects. To this end, we propose to

resort to a dithered quantization scheme that allows to re-

construct the second order moments of the original subbands

from their quantized counterparts. Then, the estimated mo-

ments are used to build the descriptors for the indexing step.

The remainder of this paper is organized as follows. In Sec. 2,

we first review the wavelet based CBIR systems. Then, in

Sec. 3, we describe the proposed retrieval method. Finally,

experimental results are given in Sec. 4 and conclusions are

drawn in Sec. 5.

2. WAVELET-BASED CBIR SYSTEM

2.1. Conventional WT-based compression

WT has been attracting much attention in the most recent

image compression algorithms. For instance, the recent

JPEG2000 coding standard operates in the WT domain and

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 1896



outperforms the JPEG standard especially at very low bi-

trate. Furthermore, it enables a scalable decoding [16]. A

wavelet-based coding system is composed of three modules:

wavelet transform, quantization and entropy coding. More

precisely, a discrete WT decomposition can efficiently be

applied according to a Lifting Scheme (LS) [17]. For an

image, a separable 1D LS is often performed over the lines

and columns. This procedure, repeated over J stages, results

in an approximation image and 3J detail subbands oriented

horizontally, vertically and diagonally.

In the following, Xj will denote the j th subband with j =
{1, . . . , 3J+1}. Once theWT is performed, the wavelet coef-

ficients are generally quantized by a uniform scalar quantizer

with quantization step qj and shift parameter aj ∈ [− 1
2 ,

1
2 ).

Thus, for the inputXj , the quantized outputXj is given by:

Xj = Q[Xj ] = qj(aj + n+ 1
2 )

if qj(aj + n) ≤ Xj ≤ qj(aj + n+ 1)
(1)

where n ∈ Z is the set of integers and, qj denotes the quanti-
zation step chosen at the j th subband. The quantization steps
q1, q2, . . . , q3J+1 are generally adjusted thanks to a rate-

distortion allocation algorithm [18].

2.2. Feature extraction

In a WT-based CBIR system, the relevant features are ex-

tracted from the wavelet coefficients. The most popular and

simplest one describes each subband by its moments espe-

cially the energy [4, 19]. Other systems resort to a statis-

tical parametric modeling of the coefficient distribution, the

parameters being considered as relevant signatures. Indeed,

many univariate models such as the Generalized Gaussian

(GG) distribution [5] and the generalized Gamma distribu-

tion [20] have been used to successfully capture the sparsity

of the wavelet coefficients. Despite their effectiveness, statis-

tical models are dedicated to the unquantized coefficientsXj

which are considered as realizations of a continuous random

variable. These models are no longer valid for quantized co-

efficientsXj which are samples of a discrete random variable.

3. PROPOSED IMAGE RETRIEVAL METHOD

UNDER DITHERED QUANTIZATION SCHEME

3.1. Motivation

Motivated by the fact that popular WT-based indexing meth-

ods retain the first pth-order moments µp
j of all detail sub-

bands as salient features [4,19], it would be interesting to have

a quantization scheme that allows to recover the pth-order
moments of the original wavelet subbands µp

j from those of

the quantized ones µ̄p
j for j = 1, . . . , 3J . To this end, based

on a previous work developed in [21] where the relationship

between µp
j and µ̄

p
j is derived, we propose to resort to a dither-

ing quantization technique in order to design efficient and ro-

bust retrieval method. It is worth noting that dithering is a

multi-purpose method which has been mainly used to reduce

the quantization artifacts. Indeed, it has been originally in-

troduced in speech and video processing to reduce the per-

ceptual distortion due to compression [22]. Moreover, it has

been employed in sensor network application by operating at

the sensor node before data transmission [23]. In what fol-

lows, we present the concept of the dithered quantization and

then propose a retrieval approach adapted to such quantized

images.

3.2. Dithered quantization

For a general uniform scalar quantization with an input Xj ,

it was shown in [21] that, for a given p ∈ N
∗, µ̄p

j is the sum

of two terms Ap and Bp such as Ap is a linear combination

of the moments µr
j with r = 0, . . . , p and, Bp is a bias term

involving the characteristic function ϕXj
ofXj :

Ap =
1

p+ 1

p∑

r=0

Cp+1
r

(qj
2

)p−r

µr
j [p⊕ r ⊕ 1] (2)

where⊕ stands for modulo-2 operation and,

Bp =
∑
n6=0

e−2iπnaj

p−1∑
r=0

( qj
2

)p−r
i−r

×

(
(p−1)−r∑

λ=0

p!iλ−1(p⊕r⊕λ)
r!(p−r−λ)!(nπ)λ+1ϕ

(r)
Xj

(
2nπ
qj

)) (3)

where i2 = −1. It is obvious that if the characteristic function
ϕXj

of the inputXj fullfills the following conditions:

∀n ∈ Z
∗, ∀r = 0, . . . , p− 1, ϕ

(r)
Xj

(
2nπ

qj

)
= 0, (4)

then, the bias term Bp vanishes and therefore, the compu-

tation of the µ̄p
j becomes a linear combination of the origi-

nal moments µr
j with r = 0, . . . , p. This can be guaranteed

by modifying the input of the uniform quantizer and adding

a random variable Rj , called dither, to the original subband

Xj before the quantization step. Such technique is known

as dithered quantization. Thus, the quantized output X̃j be-

comes:

X̃j = Q[Xj +Rj ]. (5)

Note that the dither Rj is independent of the input Xj and

could be judiciously selected in order to cancel the Bp terms.

Indeed, recall that the characteristic function ϕXj+Rj
of the

sum of the independent variablesXj and Rj is given by:

ϕXj+Rj
= ϕXj

× ϕRj
. (6)

Hence, it is enough to choose a dither variable whose charac-

teristic function ϕRj
satisfies condition (4) in order to guaran-

tee that ϕXj+Rj
meets also this condition. A dithering char-

acteristic function that satisfies this condition up to moment p
is given by:

∀t ∈ R, ϕRj
(t) = sincp(

qjt

2
). (7)
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More precisely, in the case of p = 1, it is easy to show

that a simple uniformly distributed dither over the range

[−qj/2, qj/2] leads automatically to the cancellation of B1.

Moreover, if p = 2, it is possible to select a dither as a

sum of two independent variables uniformly distributed on

[−qj/2, qj/2] in order to cancel both B1 and B2. Such dither

is the triangular distribution law on [−qj, qj ].

3.3. Moment reconstruction

By cancelling the Bp terms, the pth-order moments of the

dithered quantized coefficients X̃j , which will be denoted by

µ̃p
j , becomes a linear combination of µ

0
j , . . . , µ

p
j :

µ̃p
j =

p∑

r=0

crµ
r
j (8)

where

cr
△
=

∑p−r

t=0
p!

(p−r−t+1)r!t!

(
q

2

)p−r−t
E[Rt

j ][p⊕ r ⊕ t⊕ 1]

(9)

where E[.] denotes the mathematical expectation. For in-

stance, the first and second order moments µ1
j and µ2

j of

Xj from those of the dithered quantized subband X̃j can be

recovered as follows:

µ1
j = µ̃1

j −M1
j , (10)

µ2
j = µ̃2

j − 2M1
j µ̃

1
j + 2(M1

j )
2 −M2

j −
q2j
12

(11)

whereMp
j denotes the pth-order moment of the dither Rj .

3.4. Appropriate feature extraction strategy

In this work, we propose to select the second order moment

(i.e p = 2) of the wavelet subbands as a feature vector for
each DB image. However, based on many experiments on the

Vistex texture images [24], we have noticed that the recon-

struction of the second order moments may be inexact when

wavelet subbands are quantized at low bitrates in the higher

frequency subbands. As a result, at low bitrate (resp. mid-

dle and high bitrates), we propose to build the feature vec-

tor by taking the estimate of the second order moment of

only the low frequency subbands (resp. of all the subbands).

Moreover, it is worth noting that the resulting feature vec-

tors of the query and DB images may have different sizes

when we confront two images with very different qualities,

especially when query image is compressed at low bitrate and

model images are compressed at high bitrate, or inversely. For

this reason, we propose to adjust the descriptor vector dimen-

sion of images compressed at high bitrate to the size of that

obtained for images compressed at low bitrate by omitting

the reconstructed second order moment of the high frequency

subbands.

4. EXPERIMENTAL RESULTS

Experiments are performed on two well known texture

datasets: Vistex and Stex [24, 25]. The first one is the

popular MIT Vision Texture database, which consists of 40

textures widely used for texture image retrieval purpose. Each

image of size 512 × 512 is divided into 16 non-overlapping
images, and thus, a database of 640 images of size 128× 128
is obtained. The second one is the Salzburg Textures (Stex)

database which is a large collection of 476 images of dif-

ferent textures. The images, of size 512 × 512, are divided
into 16 non-overlapping subimages of size 128× 128, which
results in a database composed of 7,616 images. We assume

that the 16 sub-images, generated from a single original one,

are similar and considered as relevant images for each query

belonging to these sixteen images. Note that all DB images

are used as query ones. Moreover, in order to evaluate the

proposed retrieval scheme in the compressed domain, the 9/7

lifting scheme is applied to all the database images over 3

resolution levels. Then, we consider the standard uniform

quantization scheme (UQ) as well as the dithered one (DQ).

The retrieval performances are evaluated in terms of precision

PR = Rr

R
and recall RC = Rr

Rt , where R
t is the total number

of relevant images in the database, Rr is the number of re-

turned images that are relevant and R represents the number

of returned images.

The first round of our experiments has been performed on

the Vistex database. To this end, we will first compare the

proposed DQ-based retrieval approach to the state-of-the-art

method developed in [11, 12]. Let us recall that this method

is appropriate for UQ-based quantized images and, involves

a preprocessing step that aims at requantizing the high qual-

ity image to the low one before features extraction when the

query and model images have different qualities. This method

will be denoted by UQ-AR, since features are extracted after

the requantization stage. Fig. 1 provides the plots of the pre-

cision versus recall when images are quantized at different

bitrates RQ and RM , for both the query and model images,

respectively. Note that these bitrates, used to encode the query

and model images, are chosen in a way that allow us to obtain

different image qualities that range from low to high. To this

end, RQ and RM are set to {1.5, 1, 0.75, 0.5, 0.25, 0.1} bpp.
The retrieval performance of losslessly encoded images is

also presented. For each image, the second order moment

of wavelet subbands are taken as salient features. Then, the

resulting feature vectors of query and DB images are com-

pared using the normalized Euclidean distance (NED). It can

be seen from Fig. 1 that the DQ-based retrieval approach

leads to a significant improvement compared to the UQ-AR

retrieval method.

Now, we aim to compare our proposed approach to the re-

cent approach based on estimating the distribution parameter

directly from quantized wavelet coefficients using maximum

likelihood criterion [13]. This method will be denoted in
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what follows by DPE. Recall that the DPE approach assumes

that the wavelet coefficients are modeled by a Laplacian law

and, aims at estimating the original distribution parameter λ̃j

from the quantized subbands. Then, the estimated parame-

ters are chosen as a salient features. The Kullback-Leibler

divergence (KLD) is used as a similarity measure. For fair

comparison, the same features and similarity criterion will

be retained during the indexing step. To this end, we will

consider two experiments. In the first one, the moments of

wavelet subbands will be used as salient features. The NED

will be employed as a similarity measure. Thus, for the case

of the DPE approach, the second order moments of wavelet

subbands µ̃2
j are computed from the estimated parameter of

the Laplacian distribution λ̃j as follows:

µ̃2
j = Γ(3)λ̃2

j . (12)

For the second experiment, we keep the DPE approach un-

changed and adapt our proposed DQ-based approach by com-

puting the distribution parameter of the Laplacian distribution

λ̃j from the estimated second order moment by using also

Eq. (12). Then, the KLD between the estimated parameters

of the query and model images is computed. Thus, as shown

in Figures 2 and 3, our proposed DQ-based retrieval approach

outperforms the statistical based approach (DPE) for the dif-

ferent considered features and similarity measures. Finally,

while previous results are obtained with the Vistex database,

we should note that similar behavior has been also observed

with the Stex database as shown in Fig. 4. All these results

confirm the efficiency of the proposed method.

5. CONCLUSION

In this paper, we have presented a new image retrieval ap-
proach to deal with wavelet-based compressed images. More
precisely, we have proposed to reconstruct the moments of
the original wavelet subbands from those of the quantized
ones. It was shown that dithered quantization can consider-
ably simplify the estimation of the moments and therefore,
allows us to design salient features robust to the compression
effect. Experimental results have shown the benefits which
can be drawn from the proposed approach compared to the
state-of-the-art ones.
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Fig. 1. Retrieval performance in terms of PR and RC of

wavelet-based compressed images of the UQ-AR and the pro-

posed DQ-based retrieval approaches.
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Fig. 2. Retrieval performance in terms of PR and RC of

wavelet-based compressed images by using the proposedDQ-

based approach and the modified version of the DPE one.
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Fig. 4. Retrieval performance of the different approaches in

terms of PR and RC for the Stex database.
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