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Abstract—Energy Harvesting (EH) has been recognized as one
of the most appealing solutions for extending the devices lifetime
in wireless sensor networks. Despite the vast literature available
about ambient EH, in the last few years Energy Transfer (ET)
has been introduced as a new and promising paradigm. With
ET, it becomes possible to actively control the energy source
and thus improve the network performance. We focus on two
particular applications of ET which have been studied separately
in the literature so far: Energy Cooperation (EC) and Wireless
Powered Communication Networks (WPCNs). In the first case,
energy is wirelessly shared among terminal devices according to
their requirements and energy availability, whereas, in a WPCN,
energy can be purposely transferred from an energy-rich network
node (e.g., an access point) to terminal devices. We solve a
weighted throughput optimization problem for the two-node case
using optimal as well as sub-optimal schemes. Numerically, we
explain the role of EC in improving the system performance.

I. INTRODUCTION

Traditionally, in wireless sensor networks or cellular net-
works the devices are battery powered and therefore, unless
the batteries are periodically replaced, the network lifetime
is limited. However, battery replacement is not always a
viable option due to the excessive costs (e.g., if the number
of devices is high) and may even be infeasible in some
cases (e.g., devices located in toxic environments or hard-to-
reach areas, or implanted inside the human body). In these
scenarios, Energy Harvesting (EH) can be adopted to prolong
the devices lifetime for, ideally, an unlimited amount of time.
The challenge is to understand how to optimally exploit the
external renewable energy source in order to achieve high
performance. In addition to the traditional ambient energy
sources, e.g., sunlight, wind, electromagnetic field, vibrations,
etc., man-made energy sources have been recently considered.
In particular, thanks to recent technology developments, it
is possible to transfer energy wirelessly to/among different
devices and recharge their batteries in a controlled fashion.

Two of the most studied applications of the Energy Transfer
(ET) mechanism are Wireless Powered Communication Net-
works (WPCNs) [1]–[7] and Energy Cooperation (EC) [8]–
[12]. In the first case, an Access Point (AP) with unlimited
available energy but with an average power constraint supplies
different mobile or terminal devices simultaneously.1 The
devices use the harvested energy to perform computational
tasks, e.g., sensing, and uploading data packets. The challenge
is to correctly deliver the energy to the terminals which need
it most. A common approach to solving this problem is the

1The typical technology for enabling WPCNs is RF-energy transfer [13].

Figure 1: Block diagram of the system.

“harvest-then-transmit” scheme [3], in which energy transfer
and data uplink phases are temporally interleaved. In [4] the
previous paradigm was extended to consider data cooperation
among terminal devices, so that the closer user can be used
as a hybrid relay. Other works investigated the benefits of
multi-antenna transmission to improve the harvesting perfor-
mance [6], or the use of massive MIMO [14]. In general,
energy transfer and uplink data transmission are performed
in the same frequency band, thus full-duplex schemes with
interference cancellation were studied in [5], [15].

Differently, the EC paradigm is more challenging to analyze
and realize. In this case, terminal devices share their energy
in order to achieve a higher common global reward. Energy
cooperation can be realized using Strongly Coupled Mag-
netic Resonances (SCMR) [16], which provides high energy
efficiency (e.g., 15-40% at a distance of 2 m). This new
paradigm was introduced in [9], where the authors set up an
offline throughput optimization problem. Other works [?], [11]
studied the case of a transmitter-receiver pair and introduced
performance upper bounds with and without cooperation.

In this work, we combine the two previous approaches.
Even though our model is similar to [4], here we consider
cooperation in terms of energy and not information. As in [1],
we set up an online optimization problem in order to focus on
the long-term performance. However, differently from [1], to
reduce the number of system variables (duration of uplink and
downlink phases, transmission and transfer powers, etc.), we
introduce an approximate technique which is easier to compute
and useful to understand the performance of the system [2].
Using this new scheme, we compare the system throughput
with and without energy cooperation, and show that EC can
significantly increase the system performance when a doubly
near-far phenomenon is present.

The paper is organized as follows. Section II defines the
system model. In Section III we present the long-term opti-
mization problem and its optimal solution. The approximate
approach is described in Section IV. Section V presents our
numerical results. Finally, Section VI concludes the paper.
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II. SYSTEM MODEL

Consider a Wireless Powered Communication Network
(WPCN) in which an Access Point (AP) transfers energy to
two terminal devices D1 and D2 located at different distances.
D1 and D2 use the harvested energy to uplink data packets to
AP.

Due to the different locations, one device may be more
advantaged than the other in terms of average harvested
energy and average energy required for the uplink phase
(doubly near-far effect [3]). With the goal of improving the
system performance in terms of throughput, we allow energy
cooperation between D1 and D2, i.e., the two devices are able
to exchange energy between them according to their current
energy levels and requirements.

Di (i ∈ {1, 2}) is equipped with a finite battery of size
Bi,max which is discretized in bi,max+1 energy quanta and can
be considered as a buffer. One energy quantum corresponds
to Δq � Bi,max/bi,max J and for a consistent formulation we
choose Δq = B1,max/b1,max = B2,max/b2,max.

The link between AP and the two devices is half-duplex,
so Di can either receive energy or transmit data in uplink at
a given time. Moreover, thanks to the different nature of the
technologies used for energy cooperation,2 the two devices
can exchange energy independently of the current uplink or
downlink states. Uplink and downlink phases are interleaved
over time in a TDMA fashion. In every time slot k, with
k = 0, 1, . . ., four operations are performed (decision, uplink,
downlink and energy cooperation), which will be discussed in
more detail in the next subsections.

A. Decision

At the beginning of a slot, the choice of the transmission
parameters (transmission powers and durations, transferred
energy via RF and via SCMR) is performed. We consider a
centralized approach in which a coordinator (e.g., the AP) de-
cides and disseminates these parameters. Future work includes
the study of distributed schemes as in [7]. The duration of this
first phase is assumed to be negligible.

As in [?], [2], we formulate the problem as a Markov
Decision Process (MDP) and apply stochastic optimization
tools to solve it. The decision on the transmission parameters
is based on the current state of the system s, which is given by
the channel status and the battery levels, i.e., s = (b,h,g),
where b = (b1, b2) describes the current state of charge of
the two batteries, with bi ∈ {0, 1, . . . , bi,max}, h = (h1, h2)
represents the uplink channel gains of the two devices, and
g = (g1, g2) is the downlink channel gain pair.

B. Uplink

The first τ1+τ2 seconds of a slot are dedicated to the uplink
phase. In order to avoid collision, D1 and D2 transmit their
data to the common access point AP in a TDMA fashion.
Due to the different distances from AP, the two devices have
to use different powers to achieve the same transmission rate.
In particular, the uplink channel gain of Di is modeled as hi =

2With the resonant coils, an EC is performed at frequencies around
10 MHz [16], whereas an energy transfer from AP to the devices uses much
higher frequencies (e.g., 915 MHz [13]).

h̃iΘi, where h̃i is the path loss component and depends upon
the distance and Θi represents the fading component and is
i.i.d. over time. We assume h̃i = h0,i (di)

−γi , where di is the
distance between Di and AP, h0,i is the reference attenuation
at the distance of 1 m and γi is the path loss exponent. The
random variables Θ1, Θ2 are assumed independent because
of the different positions of D1 and D2, and have joint pdf
fΘ(θ) = fΘ1

(θ1)fΘ2
(θ2).

The transmission powers ρ1, ρ2 and durations τ1, τ2 change
dynamically in every slot according to the decision process.
The energy spent by device Di is Ei � ρiτi and must satisfy
the energy constraint Ei ≤ Bi, where Bi = biΔq is the energy
stored in the battery at the beginning of the slot.

C. Downlink

During the second phase, which lasts for τAP ≡ T − τ1 −
τ2 s, AP transfers energy to both devices. AP is equipped
with more than one antenna in order to perform energy
beamforming and to direct the energy toward D1 or D2. We
assume that also the downlink channel is affected by flat fading
and thus model the channel attenuation as gi = g̃iΨi, with

g̃i = g0,i (di)
−δi and Ψi ∼ fΨi

(ψi). g0,i, di, δi and Ψi are
defined as their counterparts in the previous section.

When AP transfers a power Qi ≤ Qmax (e.g., Qmax = 3 W)
to Di, the corresponding harvested energy is

Ci = τAPQiηgi (1)

where η is a conversion efficiency factor in [0, 1]. When
beamforming is used, AP is subject to the constraint Q1 +
Q2 ≤ Qmax.

D. Energy Cooperation

Energy Cooperation (EC) is useful to boost the system
performance when one device receives and/or consumes much
less energy than the other. Assume, for example, that D2 is
farther from AP and thus receives only a small amount of
energy due to the term g0,2 � g0,1 (on average). In this case,
D1 can operate as energy relay and share part of its energy
with D2, if necessary.

Since EC and downlink ET are performed with different
technologies, we assume that for the duration of the entire
slot, energy cooperation can be performed, if necessary. We
model the EC efficiency with a constant βi,̃i ∈ (0, 1) (̃i = 1
if i = 2 and vice-versa): if x joules of energy are sent from
D1 to D2, then only β1,2x J are effectively received by D2.
βi,̃i is strongly distance dependent (some energy efficiency
curves can be found in [16]). In this work, we use, as a
baseline, β1,2 = β2,1 ∈ [0.15, 0.4] which represent the losses
at a distance of two meters (considering also the conversion
inefficiencies).

EC is performed for all the slot length in parallel to the
uplink or downlink phases. The energy extracted from Di and
delivered to Dĩ is Zi and must satisfy Ei + Zi ≤ Bi, i.e., it
is not possible to use more energy than the stored amount at
the beginning of the slot.

E. Batteries Evolution

Differently from [3], [4], and similar to [1], in this work we
want to fully exploit the potential of the batteries. According
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to the previous subsections, the battery level of Di changes
dynamically in every slot according to the parameters set in
the decision phase. The update formula becomes

Bi ← min{Bi,max, Bi︸︷︷︸
initial batt.

level

−

uplink tx
energy︷︸︸︷
Ei + Ci︸︷︷︸

downlink transf.
energy

+

energy coop.
from D

ĩ
→Di︷︸︸︷

βZĩ − Zi︸︷︷︸
energy coop.
from Di→D

ĩ

} (2)

The min is used to consider overflow situations. Note that the
right term is always greater than zero because Ei + Zi ≤ Bi.

III. OPTIMIZATION PROBLEM

A. Problem Statement

We define a policy μ as an action probability measure over
the state set S. The central controller which computes the
policy knows all the system parameters (battery levels and
channel states). For every state s = (b,h,g) ∈ S, μ defines
with which probability an action a is performed. a summarizes
the transmission durations τ1, τ2, τAP, the transmission powers
ρ1, ρ2, the downlink transmission powers Q1, Q2 and the
energy transfer energies Z1, Z2. Formally, μ defines Pμ(a|s),
with

∑
a∈A(s) Pμ(a|s) = 1, where A(s) is the set of the

possible actions in state s. For the sake of presentation
simplicity, in the next sections we use a deterministic policy μ,
i.e., Pμ(a|s) is equal to 1 for a = ā and to 0 for a �= ā, where
ā is an action in A(s). However, in our numerical evaluation
we consider a more general random policy.

The goal is to maximize the long-term average weighted-
sum throughput reached by the two devices. Formally, we
study the following problem

μ� = argmax
μ

{αG1,μ + (1− α)G2,μ} (3)

Gi,μ � lim inf
K→∞

1

K

K−1∑
k=0

E [τiR(ρi, hi)] , i ∈ {1, 2}, (4)

where μ� is the optimal policy of our problem, and the
expectation is taken with respect to the channel conditions.
If the weight parameter α = 0 [α = 1] then we are focusing
only on D2 [D1]. To maximize the sum-throughput we can
use α = 1/2, whereas if we want to achieve fairness we
can choose α with a bisection search [1]. R(ρi, hi) is the
normalized transmission rate of device Di in a single slot,
approximated with Shannon’s capacity formula

R(ρi, hi) = ln

(
1 +

hiρi
σ2
0

)
, (5)

where ρi is the transmission power, hi is the uplink channel
gain and σ2

0 is the noise power.

B. Optimal Solution

The problem previously defined is a Markov Decision
Process (MDP) which can be solved optimally with stan-
dard optimization techniques, e.g., the Value Iteration Algo-
rithm [17, Vol. 2, Sec. 4]. The basic step of VIA is the policy
improvement step

J (k+1)
s = max

a∈A(s)

{
rα(τ ,ρ|h) +

∑
s′

P(s′|s, a)J (k)
s′

}
, (6)

rα(τ ,ρ|h) � ατ1R(ρ1, h1) + (1− α)τ2R(ρ2, h2) (7)

where J
(k)
s is the value function at iteration k and the bold

notation indicates a pair of values. The max operation requires
to compute the tuple (τ , τAP,ρ,Q,T ) for every state of the
system which, in general, is a computationally demanding task.
Therefore, even if (6) provides the optimal solution to the
problem, the focus of this paper is on approximate strategies
which achieve close to optimal performance while keeping the
numerical computation simple.

IV. APPROXIMATE SCHEME

Finding the optimal policy is practically feasible only for
a relatively small number of discrete values which however
corresponds to a rough quantization. Therefore, in this section
we propose a method which is based on the characteristics
of the original solution but is faster to compute and achieves
approximately the same performance as the optimal scheme.
This is particularly useful to characterize the system perfor-
mance and identify the system trade-offs.

We first reduce the state space complexity by exploiting the
channel i.i.d. properties.

A. Reducing State Space Complexity

In a general step of VIA, given the current policy, the
corresponding cost-to-go function Js has to be computed
(policy evaluation step [17, Vol. 1, Sec. 7.4]). This process
is challenging when the state space is large.

So far, the state of the system is the tuple s = (b,g,h).
However, since g and h evolve independently over time, the
state space can be reduced to s = (b) only, as follows. Define
a new cost-to-go function

Kb �
∑
g,h

J(b,g,h). (8)

Kb substitutes J(b,g,h) in the original problem. Indeed, we
can rewrite the policy improvement step as

Kb ←
∑
g,h

f(g,h) max
a∈A(b,g,h)

{
rα(τ ,ρ|h) +

∑
s′

P(s′|s, a)Js′
}

(9a)

=
∑
g,h

f(g,h) max
a∈A(b,g,h)

{rα(τ ,ρ|h) +Kb′} , (9b)

where b′ is defined using (2) as

b′i = min{bi,max, bi − ei + ci + βzĩ − zi}. (10)

ei � 	Ei/Δq
, ci � 	Ci/Δq
 and zi � 	Zi/Δq
 are the
discrete versions of Ei, Ci and Zi. Using the 	·
 operation
leads to a lower bound to the real performance.

This procedure simplifies the numerical computation be-
cause it reduces the complexity of the policy evaluation
step (there is a lower number of states) and the number of
elementary operations inside the max operation in the policy
improvement step, and will be used in the next subsection to
derive the approximate scheme.

Even with the simplification introduced in this subsection,
performing the policy improvement step, i.e., solving (9) for all
system states, remains challenging. To manage this problem,
several different approximated techniques have been proposed
in the literature so far. An interesting idea is to approximate the
function Kb with another one simpler to compute. We follow
this approach in the remainder of this section, and derive an
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|B(k)| = 9 |B(k)| = 30 |B(k)| = 100

Figure 2: Different sets B̄(k) when b1,max = b2,max = 9. Rows and columns
correspond to b1 and b2, respectively.

Approximate Value Iteration Algorithm (App-VIA) (see [18,
Sec. 6.5]).

B. Approximate Value Iteration

In the classic VIA, the optimal policy is derived by itera-
tively solving (9) until the cost-to-go function converges. In
the approximate approach, we modify every iteration of VIA
according to the following two steps:

1) compute K
(k)
b for every b ∈ B̄(k) performing the

policy improvement step (Eq. (9)), with B̄(k) ⊆ B =
{0, . . . , b1,max} × {0, . . . , b2,max}. The superscript (k)
denotes the k-th iteration of VIA and B is the set of all
battery levels;

2) interpolate K
(k)
b for every b ∈ B\B̄(k) using the values

of K
(k)
b computed in the previous step.

The advantage is that the policy improvement is performed
only for a subset B̄(k) rather that for every battery level in B.
See Figure 2 for a graphical interpretation. A black circle
means that b ∈ B̄(k). In the last case, all the battery levels are
in B̄(k), i.e., B̄(k) = B. In general, B̄(k) can dynamically
change in every step of the algorithm in a deterministic,
stochastic or simulation based way. We further discuss our
approach in the numerical evaluation section.

We now discuss in more detail the two previous points. The
policy improvement step becomes, for every b ∈ B̄(k+1),

K̂
(k+1)
b =

∑
g,h

f(g,h) max
a∈A(b,g,h)

{
rα(τ ,ρ|h) + K̃

(k)
b′

}
(11)

where b′ is defined according to (10). K̂
(k+1)
b represents the

approximate value function at step k + 1 and is defined only

in the subset B̄(k+1), whereas K̃
(k)
b is such that

K̃
(k)
b = K̂

(k)
b , if b ∈ B̄(k). (12)

In the second phase of the algorithm, for all b �∈ B̄(k), K̃
(k)
b is

derived exploiting (12) with an interpolation process or using

a mean square error approximation. In practice, K̃b(rk) is

designed in order to approximate the true function K
(k)
b . We

remark that K̂
(k+1)
b is defined only in B̄(k), whereas K̃

(k)
b is

defined for every b ∈ B.

C. Complexity

For every given (b,g,h), the policy update step requires
to iterate over all the possible actions a ∈ A(b,g,h) (see
Equation (9)), and thus to perform |A(b,g,h)| operations.
Therefore, the number of operations of a generic step of the
traditional VIA is ∑

b∈B

∑
g,h

|A(b,g,h)|, (13)

whereas for iteration k of App-VIA, we have∑
b∈B̄(k)

∑
g,h

|A(b,g,h)|. (14)

The key point is that the complexity of the traditional
value iteration depends upon the size of B, whereas App-
VIA depends only upon |B̄(0)|, |B̄(1)|, . . .. Exploiting the
structure of the state space, B̄(k) can be chosen as in [2,
Sec. VI] to obtain |B̄(k)| � |B| and significantly reduce the
complexity of the problem. For example, in our numerical
results of Section V, we have |B| ≈ 25000 (two batteries with
b1,max = b2,max = 160) and |B̄(k)| = 41, ∀k.

D. Convergence Properties

In the following we show that, provided that the approx-

imation K̃
(k)
b is sufficiently good, the long-term reward of

App-VIA is a good approximation of VIA.
First, we introduce the notation T (·) as follows. Define the

two sets K(k) � {K(k)
b , ∀b ∈ B} and K̃(k) � {K̃(k)

b , ∀b ∈
B}. Then, Equations (9) and (11) can be written as

K
(k+1)
b = T

(
K(k),b

)
, ∀b ∈ B, (15)

K̂
(k+1)
b = T

(
K̃(k),b

)
, ∀b ∈ B̄(k+1), (16)

respectively. Also, assume that the initial configurations are

equal, i.e., K(0) = K̃(0). Note that K
(k+1)
b is evaluated for

every b, whereas we compute K̂
(k+1)
b only in the subset

B̄(k+1).

Proposition 1. After N iterations, the cost-to-go functions of
App-VIA and VIA differ by at most Nε, i.e.,3

‖K(N)︸ ︷︷ ︸
VIA

− K̃(N)︸ ︷︷ ︸
App−VIA

‖∞ ≤ Nε (17)

with
ε � max

k=0,...,N−1
max
b∈B

{
K̃

(k+1)
b − T

(
K̃(k),b

)}
(18)

Proof. See Appendix A in [2]. �
We first remark that, because of (18), Proposition 1 de-

scribes a worst case analysis. N corresponds to the number of
iterations of VIA and, in our problem, it can be numerically
verified that N is typically small, e.g., N ≈ 10. The previous
proposition provides a bound to the algorithm performance
and guarantees convergence, provided that the approximation

of K
(k+1)
b is sufficiently good.

V. NUMERICAL RESULTS

If not otherwise specified, in our numerical evaluation
we used the following parameters: Nakagami fading with
parameter 1 (Rayleigh fading with no Line-of-Sight (LoS))
or 5 (strong LoS component), energy conversion efficiency
η = 0.8, h0,1 = h0,2 = 1.25 × 10−3, γ1 = γ2 = 3 (path loss
exponents), σ2

0 = −155 dBm/Hz (noise power), a bandwidth
of 1 MHz, T = 500 ms (slot duration), Qmax = 3 W
(maximum transfer power), P1,min = P2,min = 1 mW and

P1,max = P2,max = 10 mW, Bmax � B1,max = B2,max =
0.125 mJ. The distances between AP and the two devices are
(d1, d2) ∈ {(1, 3), (2, 4), (3, 5)} m. Since the devices are 2

3We adopt the notation ‖K(N) − ˜K(N)‖∞ � maxb∈B |K(N)
b − ˜K

(N)
b |.
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Figure 3: Throughput region of D1 and D2 for several distances d1, d2 =
d1 + 2 with and without energy cooperation with Rayleigh fading.

meters apart, the energy cooperation efficiency β � β1,2 =
β2,1 is set to 0.15 or 0.4 [16]. However, even if we consider
bi-directional ET, for most of the time the term Z2 (energy
transferred from D2 to D1) is zero. Also, we present our results
for the approximate scheme of Section IV and refer the reader
to [2] for a more detailed comparison between optimal and
sub-optimal approaches.

Figure 3 shows the normalized throughput region of the
two devices for different values of β and d1. The curves are
generated by changing the weight value α in Equation (3).
When α = 0, (3) degenerates to argmaxμ{G2,μ} and we
obtain the points on the y-axis, i.e., the optimization focuses
on D2 only (similarly for α = 1 with D1). It can be observed
that the distance strongly influences the performance of the
system. This is mainly due to the path loss effects, which
limit the operating range of the energy transfer technology to
a few meters. As can be seen, energy cooperation among the
two devices can greatly improve the system performance, es-
pecially when α is small. Indeed, in this case more importance
is given to D2, which can benefit from part of the energy of
D1 for uploading more data. Thus, employing D1 as a relay
to solve the doubly near-far effect may be a suitable solution.

Finally, Figure 4 is similar to the previous one but was
obtained using Nakagami fading (stronger LoS component for
the same average channel quality). Since the LoS is stronger,
the scenario is closer to the deterministic energy arrival case,
which can be shown to be an upper bound for the energy
harvesting systems. The stronger LoS directly improves the
performance of D1, whereas the throughput of D2 increases
only when EC is considered. In this case, the benefits of EC
are even larger than in the Rayleigh case.

VI. CONCLUSIONS

A wireless powered communication network consisting of
an access point and two terminal devices with energy transfer
capabilities was analyzed. We solved the long-term throughput
optimization problem and showed the role of energy coop-
eration in improving the performance of the system when a
doubly near-far effect is present. An approximation to the op-
timal solution was introduced and its quality was analytically
discussed.
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Figure 4: Throughput region of D1 and D2 for several distances d1, d2 =
d1 + 2 with and without energy cooperation with Nakagami fading with
parameter 5.
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