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Abstract—The correlation structure among the sensor observa-
tions is a significant characteristic of the wireless sensor network
(WSN) which can be exploited to drastically enhance the overall
network performance. This structure is usually expressed as
a low-rank approximation of the correlation matrix, although,
in many cases the correlation of the captured data is full-
rank. Thus, the computation of the full-rank correlation matrix
by centralizing all the measurements into one node, puts at
risk the privacy of the WSN. To overcome this problem, we
impose privacy-preserving restrictions, in order to constrain the
cooperation among the nodes, and hence promote the privacy. To
this end, the decentralized estimation of the network-wide corre-
lation matrix is obtained via a novel adaptive matrix completion
technique, where at each step, a rank-one completion problem
is solved. Through simulation experiments it has been verified
that proposed algorithm converges to the full rank correlation
matrix. Moreover, the proposed algorithm exhibits significantly
lower computational complexity than the conventional technique.

I. INTRODUCTION

A wireless sensor network typically represents a group of
sensor nodes that are able to cooperate in order to perform
a task of common interest. Nowadays, sensor nodes can be
viewed also as mobile devices with advanced capabilities
and equipped with multiple sensors, e.g. smartphones, tablets,
hearing aids, smartwatches. Under this perspective, each node
has also its own task to perform, formulating a more difficult
problem where multiple devices have to perform multiple
tasks (MDMT). Usually, the goal of a MDMT network is to
achieve enhanced performance in all tasks through cooperation
amongst the devices, where each node contributes to other
nodes’ tasks [1], [2], [3].

An important factor that determines the collaboration
amongst the devices is the underlying correlation structure of
the sensor measurements. For instance, in distributed source
coding [4], the estimated correlation between the sensors can
be used as the side information to reduce the amount of
data that have to be transmitted. In medical applications, the
correlation between the biosensors can be exploited in order
to improve the reliability and accuracy of the diagnosis.
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Recently, the research community has began to investigate
privacy preserving constraints in WSN [5]. Specifically, in
real-world applications, the sharing of raw data between the
wireless devices raises significant privacy issues. Nevertheless,
these constraints may dictate the cooperation amongst the
nodes, e.g. by forming groups of nodes. In this case, the
estimation of the correlation between different groups may
be impossible, due to the missing data.

Usually, the correlation structure of the observations is
represented by the correlation matrix of the sensor measure-
ments. Traditionally, this would involve the transmission, by
each node, of its raw sensor observations to a central node
or fusion center (FC), where the network-wide correlation
matrix can be constructed. However, for a wireless network
of devices, a distributed approach would be preferable due
to energy and robustness issues. On this premise, several
distributed computation techniques have been proposed, in
order to obtain the principal components of the correlation
matrix. For instance, in [6] and [7], the principal eigenvectors
of the correlation matrix are recursively updated without the
need of transmitting all the raw sensor signal observations to
a central node. In [8], a distributed robust subspace tracking
scheme is proposed, where each node has access to a subset
of data, which are not allowed to be shared among them.
However, these approaches adopt the assumption of a low-rank
correlation matrix, which occurs under the condition that the
observed phenomenon follows a stationary model. However,
in practice, the underlying correlation process model is often
represented by a full rank matrix [9].

In this work, we consider the challenging case, where the
correlation matrix is full rank with missing entries due to
privacy-preserving restrictions in the innernode communica-
tions. In this scenario, the decentralized estimation of the
network-wide correlation matrix appears to be impossible, due
to the limited set of raw data and the full rank of the matrix. To
overcome this limitation, we propose a novel adaptive matrix
completion technique, where at each step, a rank-one comple-
tion problem is solved via an iterative algorithm. Specifically,
we have considered that the sample-based correlation matrix
is decomposed into a time-sequence of rank-one matrices.
To deal with the missing entries, for each matrix, we have
formulated a rank-one completion problem that is solved via
the proposed iterative low-complexity technique. The obtained

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 1403



simulation results verify that the proposed algorithm converges
to the full rank correlation matrix. Moreover, for large-scale
networks, the complexity cost of the proposed algorithm can
be linear over the number of the sensor nodes.

Notation: �X�∗ =
�

k σk(X) denotes the nuclear norm of
the matrix X, where σk(X) is the k-th singular value of the
matrix; �X�F denotes the Frobenius norm of the matrix X;
the inner product of two matrices X,Y is defined as �X,Y� =
tr(XHY); diag(x) denotes the diagonal matrix which is
constructed based on the vector x; (x)+ = max(0, x) which
represents the positive part of x; ◦ denotes the Hadamard
(element-wise) product; [X]i,j denotes the element of the
matrix X at the i-th row and j-th column; [x]i denotes the
i-th element of the vector x.

II. PRELIMINARIES

A. Matrix Completion

Matrix completion [10] refers to the procedure of recovering
a low-rank matrix from a sampling of its entries, which
formally, can be written as

min
X

rank(X) subject to PΩ(X) = PΩ(C) (1)

where C ∈ RK×K is the complete matrix, Ω is the set with the
matrix indices of the non-zero entries, X is the optimization
matrix variable and rank(X) is the rank of the matrix X. The
PΩ(X) denotes the matrix where its (i, j)-th component is
equal to [X]ij if (i, j) ∈ Ω and zero otherwise. The problem
(1) is NP-hard and requires doubly exponential time in the
dimension of K to be solved [11].

In [11], it was proposed that the matrix completion problem
(1) can be approximately solved by the following convex
optimization problem,

min
X

τ�X�∗ +
1

2
�X�2F subject to PΩ(X) = PΩ(C) (2)

where τ ≥ 0. The Lagrangian of problem (2) is given by
L(X,Y) = τ�X�∗ + 1

2�X�2F + �Y,PΩ(C − X)�, where
Y ∈ RK×K is the dual variable and g(Y) = infX L(X,Y)
is the dual function. The solution of (2) can be obtained
by a two-step iterative procedure, where at each step, one
of the variables (primal-dual) is held constant while the
Lagrangian is minimized with respect to the other. Let us
describe these two steps in more detail. In Step 1, we have that
∂L(X,Y)

∂X = τ∂�X�∗ +X− PΩ(Y). Hence, the minimization
problem of Step 1, can be alternatively expressed as

argmin
X

τ�X�∗ +
1

2
�X− PΩ(Y)�2F . (3)

As it is well-known, singular-value-thresholding (SVT) op-
erator Dτ (Y) minimizes (3) ([11, Theorem 2.1]). Specifi-
cally, let Y = UΣV∗ be the singular value decomposition
(SVD) of a matrix Y, where U and V are matrices with
orthonormal columns. Then, the SVT operator is defined as
Dτ (Y) = Udiag

�
{(σi − τ)+}1≤i≤r

�
VH . Therefore, Step 1

can be expressed as

Xk = Dτ (Yk−1) (4)

Algorithm 1 SVT-based Matrix Completion
1: for k = 1, . . . , Imax do
2: Xk = Dτ (Yk−1)
3: Yk = Yk−1 + δkPΩ(C−Xk)
4: end for

i.e. the singular values with σi < τ are replaced by zero.
Regarding Step 2, it is straightforward that

∂L(X,Y)

∂Y
= PΩ(C−X). (5)

Based on the eqs. (4) and (5), the resulting iterative procedure
is formulated according to Algorithm 1.

B. Problem Formulation

Let us consider a WSN with K sensor nodes where each
node k measures mk(t) ∈ R at time t. We assume that
mk(t) is a zero-mean random variable and that the sensors are
perfectly synchronized. Then, all the sensor measurements can
be expressed into a vector form, m(t) = [m1(t) . . .mK(t)].
The correlation matrix of m(t) is defined as C = E{M(t)},
where M(t) � m(t)mT (t). When the correlation function of
the measured process is unknown, the correlation matrix can
be approximated by the sample-based weighted average, i.e.

R(t) = λR(t− 1) +M(t) =
t�

n=1

λt−nM(n). (6)

Therefore, at each time instant t, an updated version of the
network-wide correlation matrix R(t) is estimated from the
new sensor samples. Note that, when the random process m(t)
is ergodic, then for λ = 1, we have that C = limt→∞ 1

tR(t).
As mentioned in the Introduction, due to privacy preserving

constraints, each node of the WSN can only transmit its
raw measurements to a limited subset of nodes (i.e. col-
laborating nodes). We assume that, the collaborating nodes
form secure links, and these secure connections can be rep-
resented by the undirected connected graph G(N ,Ω). The
set N = {1, 2, . . . ,K} denotes the nodes, and the set Ω
is a collection of edges (i, j), which describes the available
secure links in the network. The adjacency matrix A of G is
symmetric and it is defined as [A]i,j = [A]j,i = 1, if (i, j) ∈
Ω, and 0, otherwise. Fig. 1 shows a random instance of G and
its adjacency matrix, with L = K log(K) number of edges.

Since only a limited number of correlation quantities can be
computed, each node has a partial knowledge of the correlation
matrix, which formally can be expressed as PΩ(M(t)) = (A+
I) ◦M(t), where I is a K ×K identity matrix and A is the
adjacency matrix. Note that, the identity matrix has been added
to the adjacency, in order to express the fact that each node
computes the auto-correlation of its own measurement.

By relying on the incomplete matrix of eq. (8), each sensor
node should be able to privately determine all the entries of
the correlation matrix M(t). MC techniques can be employed
for this purpose, however, their performance is determined
by the rank of the unknown matrix. One key feature of the
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Fig. 1. A random instance of a connected undirected graph G with K = 10
and its adjacency matrix. Each graph edge represent a two-way secure-link
between the respective nodes. The number of the secure-links is 33 (i.e. L =
|Ω| = 33).

formulation of (6) is the fact that, M(t) is a rank-one matrix,
and thus, MC algorithms are significantly favoured, given
that there is a proper sub-sampling of its entries. Moreover,
the correlation matrix is symmetric, hence, there are K(K−1)

2
distinct entries to be determined, over the total number of K2.

Therefore, taking into account that the matrix M(t) is
known to be rank-one, the following optimization problem
have to be solved at each time instant t, in order to recover
the missing entries of M(t),

min
X

1

2
�X�2F subject to PΩ(X) = PΩ(M(t)) (7a)

rank(X) = 1 and X � 0 (7b)

where the rank constraint makes the problem non-convex.
In the following section, we introduce an adaptive technique
which enables to efficiently solve (7a) at each time instant,
and finally recover the full rank matrix R(t).

III. PROPOSED TECHNIQUE

A. Recovery of the rank-one correlatiom matrix

In order to deal with the non-convexity of the problem (7a)-
(7b), we impose the rank-one and semi-definite properties to
the solution of the unconstrained problem (7a). We observe
that the unconstrained problem (7a) is equivalent to (2) with
τ = 0. Recall that, the first step for the solution of (2) is the
minimization of (3). Hence, for the case of τ = 0, the solution
of (3) is given by

D0(Yk−1) = UkΣkV
H
k (8)

where Uk, Vk are the orthonormal SVD matrices and Σk

is the diagonal matrix with the singular values in decreasing
ordering. Now, in order to impose the constraints (7b), we
replace (4) with the following one,

Xk = λmaxuku
T
k (9)

where uk is the first column of Uk and λmax = σ2
1 that are

provided by (8). Subsequently, Yk is updated as follows,

Yk = Yk−1 + δPΩ(M−Xk) (10)

where we have assumed that the parameter δ is independent
of the iteration index, i.e. δk = δ. Note that, since M and Xk

are symmetric matrices, matrix Yk will also be symmetric,

Algorithm 2 Completion of the rank-one correlation matrix
1: for k = 1, . . . , Imax do
2: uk ← uk−1 + αkYk−1uk−1

3: uk ← uk

�uk�
4: Xk = λmaxuku

T
k

5: Yk = Yk−1 + δPΩ(M−Xk)
6: end for

thus, the SVD operation collapses to eigenvalue decomposition
(EVD).

Eq. (9) requires only the maximum eigenvalue, hence, we
could replace the SVT operator with the solution of the
maximum eigenvalue problem, which is expressed as follows,

uk = argmax
u

uTYk−1u

uTu
. (11)

Therefore, at each iteration, the maximum eigenvector of
the updated matrix Yk−1 must be computed. However, this
operation has computational cost O(K3), which is the same
with the SVT algorithm.

To overcome this problem, an adaptive technique for updat-
ing the maximum eigenvector uk of the matrix Yk−1 may be
employed. A suitable algorithm for this case is described by
the following steps [12],

uk = uk−1 + αkYk−1uk (12a)

uk =
uk

�uk�
(12b)

where αk is the step-size parameter of the algorithm. After a
number of iterations, this algorithm converges to the maximum
eigenvector of matrix E{Yk}, by relying on the sequence of
matrices Yk with k = 1, 2, . . . , Imax. We can observe that, for
Y0 = 0, Yk is expressed as Yk = δ

�k
i=1 PΩ(M − Xi) =

δkPΩ(M)−δPΩ

��k
i=1 Xi

�
. Let us assume that the expected

value of matrices Xi can be approximated by the average
of Imax matrices, i.e. E{Xi} ≈ 1/Imax

�Imax

k=1 Xk. Then,
for k = Imax we have that E{YImax

} = δImaxPΩ(M) −
δPΩ

��Imax

i=1 E{Xi}
�
= YImax

. Hence, according to the per-
formance analysis of [12], the algorithm (12a) will converge
to the maximum eigenvector of the matrix YImax

.
Based on the previous analysis, Algorithm 2 is formulated.

The overall complexity of the algorithm is O(KLImax),
where Imax is the maximum number of iterations. A higher
value for Imax results into a better estimation accuracy,
thus providing a trade-off between the performance and the
complexity of the algorithm. However, the value of Imax is
independent of the size of the WSN, K, and for a large-scale
network it could be K � Imax. Thus, the proposed algorithm
potentially has linear complexity over the number of the sensor
nodes, given that Imax � K and L � K.

Also, it is known that, for the completion of a K × K
rank-one matrix, the number of known entries should be at
least L ≥ K log(K), in order to guarantee full recovery [10,
Section 5].
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B. Adaptive completion of the full rank correlation matrix

In the following, we describe the proposed scheme for the
estimation of the full rank correlation matrix. This scheme
consists of three steps, which are executed at each time
instant t. In the first step, each node computes the correlation
between its own measurements and the raw measurements of
its collaborating nodes. This procedure will fill some of the
entries of the k-th row and column of the correlation matrix. At
the extreme case where the node k can privately communicate
with all other nodes, then all the entries of the k-th row and
column will be filled.

In the second step, each node retrieves a number of cor-
relation quantities from its collaborating nodes. The union of
these correlation quantities with the ones which each node has
already computed in the first step, composes the set Ω, with
L = |Ω|. We assume that, the knowledge of a correlation
quantity cannot reveal information about the raw measure-
ments. The retrieval of the correlation quantities from the other
nodes of the WSN can be accomplished by a number of ways,
e.g. multi-hop network transmission, broadcast transmission.
However, the specific implementation of this procedure is out
of the scope of this work.

In the third step, the sparse matrix PΩ(M(t)) is known,
each node can solve an adaptive rank-one matrix comple-
tion problem (7a)-(7b) via the employment of the proposed
algorithm (Algorithm 2). Afterwards, the node can update the
correlation matrix R̃(t) according to (6). The aforementioned
steps are summarized in Algorithm 3, while a toy example of
the proposed scheme is shown in the Fig. 2.

Remark 1. Different correlation sets for each node : In this
work, we have considered that the cardinality of Ω is common
for all the sensor nodes. In the general case, each node could
have knowledge of a different number of correlation quantities,
i.e. PΩk

(M(t)). Then, again the nodes could exchange their
sets in order to enhance the recovery procedure.

Remark 2. Distributed estimation : The required iterations of
the Algorithm 2 can be executed in a spatial manner, e.g. with
an incremental or a diffusion based manner. For instance, in
the case where a group of sensors cooperate in an incremental
mode, each step of Algorithm 2 can be executed by each node.
The resulting eigenvector uk and the sparse matrix Yk−1,
computed by the k-th node, are then transmitted to the next k+
1 node and so on. The Imax node of this incremental structure
will have reached to the solution. Note that, the number of
quantities which must be transmitted at each iteration is only
K + L.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
technique based on Monte-Carlo (MC) simulations. Specifi-
cally, in each MC realization, a new scenario of a WSN is
created with K sensor nodes. A number of L = |Ω| edges are
randomly generated, under the constraint that the constructed
graph is connected. We assume that the communication links
between the sensor nodes are noiseless.

Algorithm 3 Adaptive completion of the full rank matrix
1: for t = 1, 2, . . . each node do
2: Based on the available measurements (of its own and

those received by the collaborating nodes), computes
the corresponding correlation quantities.

3: Retrieves the correlation quantities computed by the
other nodes and updates the random subsampling ma-
trix, PΩ(M(t)).

4: Solves the optimization problem (7a)-(7b) via Algo-
rithm 2 to obtain X(t) and compute R̃(t) = R̃(t −
1) +X(t)

5: end for
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Fig. 3. Showing the performance of Algorithm 3 with respect to the adaptation
steps (time instances), with Imax = 150.

In order to verify the convergence of the proposed tech-
nique, we have adopted a simplified model for the measure-
ments, where the stochastic vector m(t) has been generated
according to m(t) = Cd(t). The matrix C ∈ RK×K is a
fixed, full-rank and represents the correlation structure among
the sensors. Its entries have been drawn from a uniform
distribution, i.e. [C]i,j ∼ U(0, 1). The vector d(t) represents
the underlying random process, and its entries are drawn from
normal distribution, i.e. [d(t)]i ∼ N (0, 1), for i ∈ [1, . . . ,K].

To evaluate the performance of the proposed technique,
we make use of the normalized-mean-square-error (NMSE),
which is defined as NMSE = 1

T

�T
r=1

C−Xr

C , where the
supper r denotes the realization index, with r = 1, 2, . . . , T ,
while X is the estimation of matrix C for the r-th realization.
The step size αk in (12a) has been set to αk = 1/k. This value
satisfies the necessary conditions for convergence, which are
described in [12]. On the other hand, the step size δ in (10),
has been set to a fixed value equal to one, i.e., it is independent
of the iteration index. Note that, from Theorem 4.2 [11]
the convergence for the completion problem is guaranteed
provided that 0 < δ < 2.

Fig. 3 shows the performance of the adaptive algorithm
(Algorithm 3) in terms of NMSE over the number of time
instances t, for two cases of WSN sizes (i.e. K = 10 and
K = 50). As a lower bound for the achieved performance, we
have used the sampled-based correlation matrix given by (6)
where all the entries are assumed to be known at each node.
The termination parameter Imax (the number of iterations) of

2016 24th European Signal Processing Conference (EUSIPCO)

1406



  1 

2 

3 

4

[
 
 
 

𝜌13

𝜌23

𝜌31 𝜌32 𝜌33

]
 
 
 
 

1 

2 

3 

4 

[
 
 
 
𝜌11 𝜌13 𝜌14

𝜌22 𝜌23

𝜌31 𝜌32 𝜌33

𝜌41 𝜌44]
 
 
 

 

1 

2 

3 

4 

[

𝜌11 𝜌12 𝜌13 𝜌14

𝜌21 𝜌22 𝜌23 𝜌24

𝜌31 𝜌32 𝜌33 𝜌34

𝜌41 𝜌42 𝜌43 𝜌44

] 

 (a)   (b)   (c) 

Fig. 2. Toy example illustrating the proposed scheme. It consists of 3 steps (a-b-c) which are executed at each time instant. (a) Each node computes the
correlation between its measurements and its collaborating nodes. (b) Each node (node 3 in this scheme) retrieves from the network the correlations which
have been computed by the other nodes. (c) Each node recovers the unknown quantities via Algorithm 2.
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Fig. 4. Showing the performance of Algorithm 2 with respect to the number
of iterations Imax, with L = K log(K).

Algorithm 2 has been set to Imax = 150 (according to [11]).
This number, as verified also by our simulation results, is not
related with the size of the correlation matrix, and hence the
size of the WSN. We also compare the performance of the
Algorithm 3 based on the SVT (with τ = 5K).

From the results in Fig. 3, it can be seen that even in the
extreme case of L = 2K, the estimated correlation matrix
R̃(t) is close to the ground-truth one, and approaching the per-
formance of the ground-truth as the number of known entries L
increases. On the other hand, the SVT-based technique exhibits
an error floor far from the ground-truth. This is explained due
to the fact that SVT-based algorithm does not imposes a hard
constraint for the rank-one property of the matrix Y, hence
its remaining components insert errors to the solution.

In Fig. 4, we evaluate the performance of the proposed
technique (Algorithm 2) for the completion of the rank one
matrix over the number of iterations Imax. The ground-truth
curve represents the estimation error of the sample-based
correlation matrix after 1000 time instances, given that all of
its entries are known. It can be seen that, the ground-truth
value is reached after a small number of algorithm iterations.
The SVT-based algorithm also reaches the lower bound but
with slower convergence rate.

V. CONCLUSION

In this paper, we have considered a WSN where the trans-
mission of the raw data measurements, due to security reasons,

are constrained within a minimal subset of sensor nodes. The
sample-based correlation matrix has been decomposed into a
time-sequence of rank-one matrices. For each matrix, we have
formulated a rank-one completion problem that is solved via
a novel low-complexity technique. After a number of time
instances, the proposed algorithm converges to the full rank
correlation matrix. For a large-scale network, the complexity
cost of the proposed algorithm can be linear over the number
of the sensor nodes.
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