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Abstract — The estimation of means of data points lying on the 
Riemannian manifold of symmetric positive-definite (SPD) 
matrices is of great utility in classification problems and is 
currently heavily studied. The power means of SPD matrices with 
exponent p in the interval [-1, 1] interpolate in between the 
Harmonic (p = -1) and the Arithmetic mean (p = 1), while the 
Geometric (Karcher) mean corresponds to their limit evaluated 
at 0. In this article we present a simple fixed point algorithm for 
estimating means along this whole continuum. The convergence 
rate of the proposed algorithm for p = ±0.5 deteriorates very little 
with the number and dimension of points given as input. Along 
the whole continuum it is also robust with respect to the 
dispersion of the points on the manifold. Thus, the proposed 
algorithm allows the efficient estimation of the whole family of 
power means, including the geometric mean. 

Keywords: Power Mean; Geometric Mean; High Dimension; 
Riemannian Manifold; Symmetric Positive-Definite Matrix. 

 

I. INTRODUCTION 
The study of means (centers of mass) for a set of symmetric 

positive definite (SPD) matrices has recently attracted much 
attention, driven by practical problems in radar data processing, 
image and speech processing, computer vision, shape analysis, 
medical imaging (especially Diffusion Magnetic Resonance 
Imaging and Brain-Computer Interface), sensor networks, 
elasticity, mechanics, quantum entanglement, numerical 
analysis and machine learning (e.g., [1-6]) 1 . In many 
applications the observed data can be conveniently summarized 
by SPD matrices, for example, some form of their covariance 
matrix. In others, SPD matrices arise naturally as kernels, 
density matrices, elements of a search space, etc. Regardless 
the nature of the data generating them, SPD matrices may be 
treated as points on a smooth Riemannian manifold in which 
natural geometrical notions such as distance along the geodesic 
between two points and the center of mass (mean) between two 
or more points are naturally defined [2]. In turn, these notions 
allow useful operations such as interpolation, smoothing, 
filtering, approximation, averaging, signal detection, and 
classification. In the latter application, a simple minimum 

                                                             
1 The first author has been partially supported by the European 
project ERC-2012-AdG-320684-CHESS 

distance to mean (MDM) classifier has been shown to perform 
as state-of-the-art classifiers in the challenging field of brain-
computer interfaces [3]. Thence, given a cloud of data points, 
their mean on the manifold is the natural point where a tangent 
space to manipulate them should be constructed, allowing the 
application of other classification algorithms within the 
Riemannian framework. For these reasons, among many 
others, the numerical estimation of means on Riemannian 
manifold is currently a subject of intense investigation. 

A. The Manifold of Symmetric Positive-Definite matrices 
In differential geometry, a smooth manifold is a topological 
space that is locally similar to the Euclidean space and has a 
globally defined differential structure. A smooth Riemannian 
manifold M is equipped with an inner product on the tangent 
space defined at each point and varying smoothly from point 
to point. The tangent space TGM at point G is the Euclidean 
vector space containing the tangent vectors to all curves on M 
passing through G (Fig. 1).  
 
 

 
 
Figure 1: Schematic representation of the SPD manifold, the geometric mean  
G of two points and the tangent space at G. Consider two points (e.g., two 
covariance matrices) C1 and C2 on M. The geometric mean of these points is 
the midpoint on the geodesic connecting C1 and C2, i.e., it minimizes the sum 
of the two squared distances δ2(C1, G)+δ2(C1, G). Now construct the tangent 
space TGM at G. There exists one and only one tangent vector ζ1 (respectively 
ζ2) departing from G and arriving at the projection of C1 (respectively C2) 
from the manifold onto the tangent space; we see that the geodesics on M 
through G are transformed into straight lines in the tangent vector and that 
distances are mapped logarithmically; the map from the manifold (symmetric 
positive definite matrices S++) to the tangent space (symmetric matrices S) is of 
logarithmic nature. The inverse map from the tangent space to the manifold is 
of exponential nature [2]. 
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B. The Geodesic 
The SPD manifold has nonpositive curvature and is complete; 
for any two points C1 and C2 on M, a unique path on M of 
minimal length (at constant velocity) connecting the two 
points always exists. The path is named the geodesic and the 
points along it satisfy 
 

 ( ) [ ]1 1 1 1
2 2 2 2

1 t 2 1 1 2 1 1# ,   t 0,1
t

C C C C C C C− −

= ∈ ,  (1) 

 
with t the arc-length parameter [2] (Fig. 1). With t=0 we are at 
C1, with t=1 we are at C2 and with t=1/2 we are at the 
geometric mean of the two points (denoted G in Fig. 1). As a 
special case we note I#tC=Ct. Geodesic equation (1) verifies 
C1#tC2=C2#1-tC1 and (C1#tC2)-1=C1

-1#tC2
-1. The points along the 

geodesic can be simply understood as the means of C1 and C2 
weighted by t according to the Riemannian metric, in analogy 
with the weighted mean according to the Euclidean metric 
given by (1-t)C1+tC2.  

 

C. The Distance 
Given two matrices (points) C1 and C2 of dimension N·N on 
M, their Riemannian distance is the length of the geodesic (1) 
connecting them. It is given by [2] (Fig. 1) 
 

( ) ( ) ( )1 1
2 2 2 2
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,  
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where Λ is the diagonal matrix holding the N eigenvalues 
λ1,…,λN of matrix 1 1

2 2
1 2 1C C C− −  or of similar matrix 1

1 2C C− . This 
distance has a remarkable number of properties, some of 
which are listed in [7]. Besides the obvious symmetry and 
positivity, particularly useful in signal processing are the 
following invariance properties (for any invertible B): 
 
Congruence ( ) ( )2 1 21 ,  ,  T TBC B BC B C Cδ δ= ,    (3) 

Self-Duality ( ) ( )1 1
1 2 21,  ,  C C C Cδ δ− − = .  (4) 

 

D. Means of a Matrix Set: Variational Definition 
Let C={C1,…,CK} be a set of K SPD matrices and its 
associated K positive weights w={w1,…,wK} with Σkwk=1. 
Typically, in signal processing the elements of C are noisy 
data points (recordings, observations, etc.) or quantities 
derived thereof. Following Fréchet’s variational approach, the 
center of mass G of set C given a distance function d(⋅,⋅) is the 
point G minimizing the variance (dispersion) of points: 
Σkwkd²(G, Ck). For instance, the w-weighted Arithmetic and 
Harmonic Mean are defined, respectively, as 
 
 ( )

2

k k k kk k
; argmin

FG
G w w C G w C= − =∑ ∑CA

,  (5) 

 ( ) ( ) 121 1 1
k k k kk k

; argmin
FG

G w w C G w C
−− − −= − =∑ ∑CH

.  (6) 

E. The Geometric Mean of a Matrix Set 
In M the w-weighted Geometric Mean GG (w;C) is the point 
realizing the minimum of Σkwkδ2(Ck, GG), where the 
Riemannian distance function δ(⋅,⋅) acting on M has been 
defined in (2). The geometric mean is the unique point on M 
satisfying non-linear matrix equation [8, 9] 
 
 ( )1 1

2 2
k kk

0w Ln G C G− −

=∑ G G .  (7) 

 
In general, it has closed-form solution only for K=2, in which 
case it is indeed equal to C1#½C2 (indicated shortly as C1#C2) - 
see (1) and Fig. 1 - furthermore, for K=2 it is the unique 
solution to Riccati equation (C1#C2)C2

-1(C1#C2)=C1 [2] and is 
also equal to B-1D1

½D2
½B-T for whatever joint diagonalizer B 

of C1 and C2, i.e., for whatever matrix B satisfying BC1BT=D1 
and BC2BT=D2, with D1, D2 invertible diagonal matrices [7]. 
The geometric mean enjoys all 10 properties postulated in the 
seminal work [10]. These properties can be found listed in 
[9,11]. We remind here the congruence invariance (8) and 
self-duality (9), inherited directly from the corresponding 
properties of its associated distance function (see (3) and (4)): 
 
 BGG w;C1,!,CK( )BT =GG w;BC1B

T ,!,BCKB
T( ) ,  (8) 

 GG
−1 w;C1

−1,!,CK
−1( ) =GG w;C1,!,CK( ) .  (9) 

F. Power Means 
In the same spirit of section D. and E., given again 
C={C1,…,CK} and w={w1,…,wK}, we can generalize to SPD 
matrices the power mean of real numbers (generalized means) 
in the continuum p∈[-1,1] such as [9, 11-12], 
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C C

C C

P P

P P
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 , (10) 

 
where, for any SPD matrices Ck, GP #pCk with p∈(0,1] is the 
mean of GP and Ck weighted by p (1), C -1={C1

-1,…,CK
-1}  and 

GG (w;C) is the geometric mean of section E. GP (w;C;p) is 
named the w-weighted power mean of order p [9, 11-12]. 
Following (10), the pair of power means obtained at 
symmetric values of p around zero are the dual of each other; 
for a negative value of p the mean is defined as the inverse of 
the mean for –p as applied on the inverted input matrices C -1. 
Power means interpolate continuously in between the 
harmonic mean (p = -1), the geometric mean (p = 0, evaluated 
at the limit) and the arithmetic mean (p = 1). Thereupon, the 
family of the power means encompasses and generalizes all 
Pythagorean means we have encountered so far. All of them 
enjoy the congruence invariance as the geometric mean (8), 
but their duality (second line of (10)) coincides with the self-
duality property (9) only for p = 0. The numerous properties of 
the power means can be found in [12].  
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II. ALGORITHMS FOR POWER MEANS 

A. Motivation 
We sought a general algorithm for computing the w-weighted 
power mean of order p, with p∈(-1, 1)\{0}. We are also 
interested in an effective algorithm for estimating the 
geometric mean (p=0). The most popular algorithm for 
computing the geometric mean is its gradient descent flow 
with fixed step size, however its convergence rate deteriorates 
rapidly as the SNR decreases. The same is true for the method 
based on approximate joint diagonalization in [7]. Second 
order methods have complexity growing very fast with the 
size of the input matrices, thus they are little useful in practical 
applications [13]. The algorithm proposed in [14] has high 
complexity per iteration and slow linear convergence rate. For 
a review see both [13] and [7]. In contrast, the complexity per 
iteration of the algorithm we propose is low and its (linear) 
convergence rate is fast and almost uniform for p = ± ½. Here 
uniform convergence rate means that the number of iterations 
does not increase with the size nor with the number of the 
input set matrices, a very useful property in practical 
applications. Importantly, the convergence rate is robust with 
respect to the dispersion of the points (noise) in the whole 
interval p∈(-1, 1)\{0}, as we will see. 
 

B. A General Multiplicative Fixed-Point Algorithm 
Hereafter it will be convenient to lighten notation; let us 
denote the weighted power mean of order p as P, which by 
(10) is equal to GP (w;C;p) if p∈(0, 1] or to (GP (w;C-1;-p)) -1 if 
p∈[-1,0). This way we will need to handle only one 
expression for whatever value of p∈(-1, 1)\{0}, such as  
 
 ( )* *; ; pP G w= CP   (11) 

 
where *=sgn(p) is the dual operator. As initialization we take 
as customary the closed form solution of the mean in the case 
when all matrices in set C all pair-wise commute. It has been 
proved in [12] (Property 1, p. 1502) that the mean is then 
  

 ( )
1

0
pp

k kk
P w C= ∑ .  (12) 

 
Let us now turn to the algorithm. We write (11) using (1) to 
obtain 
 

 ( ) *
2 2 2 2

p* *
k kkP P w P C P P∗ ∗ ∗− −⎛ ⎞= ⎜ ⎟

⎝ ⎠
∑  . (13) 

Equation (13) as a unique SPD solution [12]. Numerical 
experiments show that iterating this expression as it is 
(hereafter referred to as “naive fixed-point”) results in a rather 
slow convergence rate, maximal for abs(p)=½, but slower and 
slower as abs(p) get closer to 0 or to 1. In order to fasten 
convergence we design a multiplicative algorithm as it 
follows: post-multiplying both sides of (13) by P-*/2 and taking 
the inverse at both sides we obtain 

 
 * *

2 21P H P− − −= ,  (14) 
where 

 ( )2 2
p*

k kkH w P C P∗ ∗− −=∑ .  (15) 

 
From (13) we see that upon convergence H=I. H here plays 
the role of the origin in the SPD manifold M for data linearly 
transformed by P-*/2. In particular, the identity matrix I is the 
point of symmetry in M corresponding to 0 in the Euclidean 
space; as P-1/2 is a whitening matrix for the arithmetic mean 
(p=1), so P-*/2 is a whitening matrix for the whole family of 
power means along continuum p∈[-1, 1]. We wish to proceed 
by multiplicative updates according to (14). Rather than to P* 
itself, we thus seek an algorithm converging to P-*/2, which is 
its inverse square root for * = 1, i.e., when p∈(0, 1] and its 
square root for * = -1, i.e., when p∈[-1,0). The numerical 
stability of fixed-point iterates (14) is ensured by the fact that 
H converges toward I. Moreover, using our update rule any 
update matrix with form H-φ in (14) is equivalent to H-1 upon 
convergence. We have observed that by using a fixed 
exponent φ from the first iteration we can reach convergence 
rate faster than the one achieved by the naive fixed point in the 
whole interval p∈(-1, 1)\{0}. For doing so, we have to take φ 
inversely proportional to p as per  
 

  [ ]11
2φ ε  p ,  2  ε 1,− ∈= ,  (16) 

 
where ε is a constant eccentricity parameter for hyperbola (16) 
delimiting an acceptable interval for φ as a function of |p|. At 
the lower limit ε = 1 we have a unit hyperbola φ = ½ / abs(p). 
By increasing ε toward 2 we obtain faster convergence, up to a 
certain value, which depends upon the signal to noise ratio. In 
this study we take ε as 4/3 and we keep it fixed in all 
simulations, obtaining quasi-uniform convergence rate for p = 
± ½ in a wide range of situations, as we will show next by 
means of simulations.  
 
Algorithm MPM (Multiplicative Power Means)  
INPUT:  p∈(-1, 1)\{0}, K positive weights w={w1,…,wK} such that 
Σkwk=1 and K SPD matrices C *={C1

*,…,CK
*}, with *=sgn(p).  

OUTPUT: P, the w-weighted Power Mean of order p.  
BEGIN 

Initialize X as the principal square root inverse of (12) if p∈(0,1] 
or as its principal square root if p∈[-1,0). 
Set ζ equal to a small floating precision number (e.g., 10-10) 
Set φ = 0.375/abs(p)  
REPEAT 

( ) p*w  T
k kk

H XC X⎡ ⎤← ⎢ ⎥⎣ ⎦
∑  

X H Xϕ−←   

UNTIL 1
N FH I ζ− <  

RETURN 
( ]
[ )

         p  0,  1
,    

            p 1,0

T
T X if

P Y Y Y
X if

−⎧ ⎫∈⎪ ⎪
= = ⎨ ⎬

∈ −⎪ ⎪⎩ ⎭
  

END. 
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III. SIMULATION STUDIES 
 

In many engineering applications, the matrix condition 
number of the SPD matrices summarizing the data 
(observations, recordings,…) tends to be positively correlated 
with the number of sensors. Also, the dispersion in the 
manifold of the matrices is proportional to the noise level. The 
following generative model for input data matrices {C1,…,CK} 
of size N⋅N is able to reproduce these properties: 
 
 ( )T T

k k k k kC UDU V E V Iν α= + + ,  (17) 
 
where  
 
- the signal part is given by UDkUT, where U is a matrix with 

elements drawn at random at each simulation from a 
uniform distribution in [-1,1] and then normalized so as to 
have columns with unit norm and Dk are K diagonal 
matrices with diagonal elements dk,n randomly drawn at 
each simulation from a squared Gaussian distribution with 
expectation=1/2n, where n∈{1,…,N} is the index of the N 
diagonal elements, thus forming elements of a well-known 
geometrical series absolutely converging to 1. The elements 
of the series represent the energy of N source processes, 
thus their sum is supposed finite. 

- The uncorrelated noise part is given by αI, where I is the 
identity matrix and α here is taken as 10-6; 

- The structured noise part is given by VkEkVk
T, where the Vk 

matrices are generated as U above, the Ek matrices are 
generated as Dk above and ν is a constant controlling the 
SNR of the generated points through 

 

 
( )
( )( )

E

 E

T
kk

T
k k kk

tr UDU
SNR

tr V E V Iν α

⎡ ⎤⎣ ⎦=
⎡ ⎤+⎣ ⎦

∑
∑

, (18) 

 
where E denotes expectation. In the ensuing simulations we 
study relevant outcome parameters as a function of the SNR, 
which is inversely proportional to noise level as per (18), as 
well as a function of the size (N) and number (K) of input 
matrices. We compare the gradient descent algorithm for 
estimating the geometric mean (section II.A), the naive fixed 
point algorithm for power means given in [12] (section II.B) 
and the MPM algorithm here presented, the latter for several 
values of p. The gradient descent algorithm is known to 
converge only up to a certain value of dispersion, i.e., when 
the SNR is sufficiently high [15]. The stopping criterion is 
chosen identical for all algorithms: the relative error of matrix 
P with respect to a reference matrix Pref is a dimensionless 
measure defined as: 
 
 

2 2

ref refF F
P P P−  . (19) 

 
As stopping criterion, considering two successive iterates P(i-
1) and P(i), we use 

 

 ( ) ( )
211

i i 1N F
P P I−

− − ,  (20) 

 
whose magnitude does not depend on the size nor to the norm 
of the matrices. Figure 2 shows the typical convergence 
behavior for the geometric mean gradient descent algorithm, 
the naive algorithm with p=0.5 and the MPM algorithm (p=0.5 
and p=0.001), for N=20, K=100 and SNR={100, 10, 1, 0.1}.  
 

 
Figure 2: Typical convergence behavior (on abscissa the number of iterations 
and on the ordinate the convergence as defined in (20) expressed in dB) for 
the geometric mean gradient descent, naive fixed point with p=0.5 and the 
MDM algorithm with p={0.5, 0.001}, for N=20 (dimension of input 
matrices), K=100 (number of input matrices) and SNR={100, 10, 1, 0.1} (18). 
 
Figure 3 shows the main effects (bars) and their standard 
deviation (sd: lines) across 50 simulations of N={10, 25, 50}, 
K={10, 100, 500} and SNR={100, 1, 0.01} on the number of 
iterations. “Main effects” means that for each level of N, K 
and SNR the average and sd are computed across all levels of 
the other two variables, as in a classical analysis of variance 
(ANOVA). We see that the number of iterations required by 
the MPM algorithm is comparable in all situations for p=0.5 
(quasi-uniform convergence behavior), whereas for the 
geometric mean gradient descent it grows rapidly with N and 
with noise, as it is well known [7]. Even with p=0.001, which 
is a very small value, the convergence rate of the MPM is 
superior to the convergence rate of the geometric mean 
gradient descent flow, which often do not converge at all (the 
maximum number of iterations allowed was fixed to 50 for all 
algorithms. See Fig. 2 for examples of divergence). 
 

 
Figure 3: main effects average (50 simulations) and sd number of iterations 
for N={10, 25, 50}, K={10, 100, 500} and SNR={100, 1, 0.01} for the 
geometric mean gradient descent and the MPM algorithm with p={0.5, 0.4, 
0.001}. 
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The simulation in Fig. 4 (left) shows the relative error (19) of 
the power mean with respect to the geometric mean (p=0) for 
several small values of p, N=10, K=100 and SNR={100, 1, 
0.01}. We see that the approximation to the geometric mean in 
term of log-relative error is linear in log-p, ceiling to 10-5 with 
high noise. Figure 4 (right) shows the main effects (across 50 
simulations) of N={10, 25, 50}, K={50, 100, 500} and 
SNR={100, 10, 1} on the error for p=0.001. We see that the 
error decreases with K and increases with N and with noise. 
Notice that an error much lower than this can be achieved by 
computing the power mean for two small symmetric values 
around zero and then computing their geometric mean by the 
closed-form solution for two matrices (see section E.); in 
practice a relative error < 10-3 is fully satisfactory, since the 
noise level in challenging data is much higher than that.  
 

 
Figure 4: Relative Error to the geometric mean obtained with the MPM 
algorithm. Left: N=10, K=100, SNR={100, 1, 0.01} and p={10-5,…, 10-1}. 
Right: Main effects (bars) and sd (lines) obtained across 50 repetitions for 
p=0.001, N={10, 25, 50}, K={10, 100, 500} and SNR={100, 1, 0.01}. 
 
Figure 5 is a TraDe plot (log-trace vs. log-determinant) for a 
sampling of power means along continuum p∈[-1, 1], showing 
the log-log linear relation of the trace and determinant of 
power means along the Pythagorean continuum.  

 
 

 
 
Figure 5: TraDe plot obtained with N=10, K=10 and SNR=1, for power 
means corresponding to p=1(Arithmetic), 0.5, 0.1, 0 (Geometric), -0.1, -0.5 
and -1 (Harmonic). The relationship between the trace and the determinant of 
power means is log-log linear. 
 
 

IV. CONCLUSIONS 
 

Power means are generalized means interpolating 
continuously in the interval p∈[-1, 1], with p=1 yielding the 
arithmetic mean, lim p→0 yielding the geometric mean and 
p=-1 yielding the harmonic mean. We have presented a new 
multiplicative algorithm for estimating power means in the 

interval p∈[-1, 1]\{0}. A numerical analysis shows that its 
convergence rate is very fast and quasi-uniform for values of p 
close to ½ and –½, while for values of p close to 0 it is still 
faster as compared to the gradient descent with fixed step-size 
used for estimating the geometric mean. Furthermore, it 
converges also in low SNR situations. We can therefore prefer 
the proposed algorithm also for approximating the geometric 
mean. In conjunction with expressions (5) and (6), with the 
MPM algorithm we can now estimate a number of means 
sampling along the continuum p=[-1, 1], as in Fig. 5. We name 
such a sampling a Pythagorean mean field. Applications of 
mean fields include the possibility to evaluate the most 
appropriate choice of mean depending on its use and on the 
data at hand. Mean fields also allow the extension of current 
Riemannian classifiers, such as in [1, 3-5], for instance 
combining current classifiers as applied to all the means of the 
field. The application of mean fields to real data will be the 
object of future investigations. 
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