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Abstract—Speech understanding in adverse acoustic 
environments is still a major problem for users of hearing-
instruments. Recent studies on supervised speech segregation 
show good promise to alleviate this problem by separating 
speech-dominated from noise-dominated spectro-temporal 
regions with estimated time-frequency masks. The current study 
compared a previously proposed feature set to a novel auditory-
model based feature set using a common deep neural network 
based speech enhancement framework. The performance of both 
feature extraction methods was evaluated with objective 
measurements and a subjective listening test to measure speech 
perception scores in terms of intelligibility and quality with 17 
hearing-impaired listeners. Significant improvements in speech 
intelligibility and quality ratings were found for both feature 
extraction systems. However, the auditory-model based feature 
set showed superior performance compared to the comparison 
feature set indicating that auditory-model based processing could 
provide further improvements for supervised speech segregation 
systems and their potential applications in hearing instruments. 

Keywords—hearing aids; speech enhancement; deep neural 
networks; auditory models  

I.    INTRODUCTION 
State-of-the-art hearing-aids successfully compensate for 

loss in audibility due to mild to moderate sensorineural hearing 
loss. At least in quiet acoustic conditions, users of such 
hearing-aids can obtain near-to-normal speech understanding. 
However, interfering noises still compromise the ability of 
hearing-aid users to follow conversations in more challenging 
acoustic conditions. Speech enhancement algorithms try to 
alleviate this problem by improving speech intelligibility 
through the attenuation of noise-dominated parts of the signal 
while retaining speech-dominated parts. Nevertheless, 
commonly used speech enhancement algorithms based on 
spectral subtraction or Wiener-filtering showed no or only 
minor speech intelligibility (SI) improvements in stationary 
and non-stationary background noises [1][2], most likely due to 
inaccurate assumptions about the statistical properties of the 
interfering noise. Specifically, background noises that contain 
speech-like characteristics (such as spectro-temporal modu-
lation patterns, periodic components etc.) are likely to be 
misclassified as the target speech by these statistical-based 
speech enhancement algorithms.  

More recently, supervised speech segregation has been 
proposed as a method for speech enhancement in hearing 
instruments [3][4]. This approach is based on the concept of 
the ideal binary mask (IBM) [5], which classifies the spectro-

temporal representation of noisy speech into time-frequency 
(T-F) units either dominated by speech or by noise according to 
their instantaneous SNR and a pre-determined threshold. The 
IBM is employed as a training target for the supervised training 
process of a machine learning algorithm such as a deep neural 
network (DNN) [4] or Gaussian mixture model (GMM) [3] 
based classifier. The algorithm estimates the IBM based on a 
set of acoustic features being extracted from the noisy input 
signal in each time frame. Using this approach, [3] and [4] have 
shown large improvements in speech intelligibility for normal-
hearing and hearing-impaired listeners.  

However, [6] showed that the robustness of the segregation 
in “unseen” acoustic conditions is largely limited when the 
same noise recording was used for both training and testing of 
the classifier. Furthermore, the effectiveness of IBM-based 
speech segregation depends on an appropriate choice of the 
threshold-value in respect to the long-term SNR of the input 
sound. In practice, where the long-term SNR is unknown, this 
may lead to more estimation errors in binary masking 
algorithms compared to algorithms that use an ideal ratio mask 
(IRM) paradigm [7]. Recently, [8] and [9] addressed these 
aspects by employing the IRM as training target as well as 
evaluating the performance on novel segments of the 
background noise. Even in these more challenging testing 
conditions, significant improvements in speech intelligibility 
were found for hearing-impaired and normal-hearing listeners. 

A comparison study [10] for different acoustic features 
found that linear gammatone features were the best performing 
single feature for a range of non-stationary background noises. 
The authors proposed a multi-resolution cochleagram feature 
(MRCG) based solely on the gammatone features and showed 
its’ superior performance to a completely FFT-spectrum based 
feature set used in their previous studies. Thus, for supervised 
speech segregation systems, auditory inspired features based on 
the gammatone filterbank seem to be beneficial. However, the 
algorithm performance was only evaluated in one SNR 
condition (-5 dB) and no human listening tests were performed.  

The auditory image model (AIM) [11] is a time-domain 
functional model of human auditory processing. It generates a 
series of two-dimensional representations of sounds referred to 
as “auditory images”. For speech analysis, the “strobed” 
temporal integration mechanism of AIM generates a stabilized 
auditory image (SAI) that enhances the voiced speech parts 
without distorting the temporal fine-structure information. In 
addition, a scale-shift covariant version of SAI, called size-
shape image (SSI) [12], is constructed via a normalisation 
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process and results in a more stable pattern for different 
utterances of the same vowel spoken by speakers that differ in 
their vocal-tract lengths (VTL) [13]. Researchers at Google 
investigated the application of SAI in a machine-hearing 
application using a sparse-coding strategy [14] and suggested 
that AIM processing might improve robustness to noise.  

In this study, we propose a novel auditory-inspired feature 
set comprised of features based on the linear gammatone 
filterbank (GT) [15] and the auditory image model (AIM). The 
motivation was to further improve the segregation performance 
obtained with GT-based features and their robustness to unseen 
conditions by incorporating the higher-level features of AIM 
processing. To our knowledge, this is the first study that 
applies AIM to the task of supervised speech segregation. As a 
benchmark, we compare the proposed feature set to the feature 
set used in [4] by combining both front-ends separately with a 
DNN-based speech segregation algorithm. The two DNN 
systems under test have been evaluated in terms of 
classification performance and recognition scores in a 
subjective listening test with hearing-impaired listeners. 
Similar to a more recent speech segregation study [8] we used 
the IRM as target function and “unseen” segments of noise for 
the testing dataset. Furthermore, the DNN framework was 
designed to generalize to a range of SNR conditions relevant 
for the target population. 

II.   METHODS 

A.   Signal processing framework 
The general signal processing framework (shown in Fig. 1) 

was based on a supervised speech segregation framework that 
applies a DNN to estimate the IRM for the enhancement of the 
noisy input signal. Firstly, the noisy input speech was analysed 
over 20 ms time windows with an overlap of 10 ms in a 
gammatone-based analysis and synthesis scheme [15]. For each 
time frame the GT envelopes were computed in 63 frequency 
channels ranging from 50 to 8000 Hz. The envelopes were then 
weighted with the estimated IRM gains from the DNN system 
and combined with the original noisy phase information to 
finally resynthesize the enhanced speech signal for presentation 
to the user. The two distinct sets of acoustic features were 
extracted from each frame and fed into the input layer of the 
DNN algorithm to produce an estimation of the IRM gain in 
each frequency channel.  

B.   Feature extraction 
The comparison feature set (CO) was based on the one used 

in a recent study by [4] but following the procedures of [16] to 
compute features across all frequencies simultaneously in each 
time frame. The CO was exclusively based on features 
computed in the spectrum-domain using the fast Fourier 
transform. It was comprised of the 15-dimensional amplitude 
modulation spectrum (AMS) for each frequency channel (in 
total 63 x 15 dimensions), the 31-dimensional mel-frequency 
cepstral coefficients (MFCC) and the 12-dimensional RASTA-
perceptual linear prediction coefficients (RASTA-PLP). Delta 
and delta-delta features of RASTA-PLP were added to 
incorporate temporal information of past frames, which 
resulted in a total dimension of 1012 per time frame for the CO 
feature set.  

The proposed feature set (AU) combined linear gammatone 
features (GT-EN) and AIM features (SSI-DCT) to form an 
auditory modelling based feature set. The GT-EN features 
comprised the log-energies of the envelopes of the 63 output 
channels of the GT filterbank (with the same resolution as used 
in the analysis stage). The SSI-DCT features consisted of the 
lower-order discrete cosine transform (DCT) coefficients (2-
22) of the 12 peak columns in the size-shape image (SSI) [12] 
constructed by the AIM [11]. The total dimension of the AU 
feature set amounts to 315, including 63 GT-EN features and 
252 SSI-DCT features. 

C.   Neural network model 
The DNN model consisted of a linear input-layer with the 

number of units given by the dimension of the feature set, two 
hidden layers with 100 and 50 units, and a linear output layer 
with 63 units determined by the number of frequency channels 
of the IRM target. Both hidden layers used a saturated linear 
transfer function (linear between 0 and 1, and saturated at 
values outside that range). The DNN was trained with the 
resilient backpropagation algorithm [17] in full-batch mode to 
minimize the mean squared error between the target values and 
the estimation. Weight decay regularisation was used to 
improve generalisation and increase robustness to the 
mismatch between training and testing data. The 80 training 
sentences (8 lists) were taken from the IEEE sentences [18] 
spoken by a male talker, and mixed with randomly selected 
segments of two types of 18s-long masking noises at 5 SNR 
levels (from -2 to 6 in steps of 2 dB). The masking noises 
consisted of a speech-shaped noise (SSN), with the same long-
term spectrum as the target speech, and a multi-talker babble 
noise (BABBLE), artificially constructed by mixing random 
sentences of 4 male and 4 female talkers from the TIMIT 
corpus. 

 
Fig. 2. Averages of the pure-tone audiometric thresholds of the tested 
ears for all participants (n=17). Error-bars represent standard deviations. 

 
 

Fig. 1. Signal processing schematic of the DNN based speech 
segregation system using Gammatone (GT)-analysis and synthesis.  

 

2016 24th European Signal Processing Conference (EUSIPCO)

2301



III.   EVALUATION 
In order to evaluate the performance in mismatched 

conditions, 20 “unseen” sentences (2 lists) from the remaining 
lists of the IEEE corpus (male talker) were used for objective 
measurements of the classification accuracy. These lists 
constitute a part of the sentences that were used for the 
subjective listening test. The sentences were mixed at 0 and 4 
dB SNR with randomly chosen segments of 8s-long noise 
recordings of SSN and BABBLE (original noise recordings 
were split into two non-overlapping parts: 16s long for training 
and 8s long for testing). 

A.   Objective evaluation: classification accuracy 
We compared the estimation accuracy of the two DNN 

systems trained with CO features and AU features (referred to 
as DNN-CO and DNN-AU, respectively), by measuring the 
HIT-FA metric proposed by [3]. HIT-FA scores were obtained 
by subtracting the percentage of type-I classification errors 
(false alarms, FA) from the percentage of correctly classified 
speech-dominant T-F units (HITs). The HIT-FA metric has 
been shown to correlate with speech intelligibility scores and 
has been used in many speech segregation studies [4][8]. In 
order to compute HIT-FA scores, we converted the ratio masks 
(estimated and ideal) to binary masks by applying a local SNR 
criterion of -5 dB. HIT-FA scores were computed over the 20 
testing sentences for each condition, and are listed in Table 1. 

B.   Subjective evaluation: listening experiment 
Seventeen native-speaking hearing-impaired listeners (10 

male, 7 female with an average age of 62.4 years) with mild-to-
moderate hearing loss took part in the listening experiment. 
Participants were recruited through poster advertisement at the 
University of Southampton and the local community. All of 
them were regular users of hearing aids. During testing, 
participants did not wear their hearing aids and stimuli were 
presented to the better ear only. For each participant, 
compensation of hearing thresholds was performed according 
to the NAL-R procedure [19]. The averaged audiometric 
thresholds for the tested ears are shown in Fig. 2. The stimuli 
were generated with MATLAB using a laptop (Dell Latitude 
E7440) connected to a digital soundcard (RME Babyface) and 
presented via circumaural headphones (Sennheiser HD380pro) 
in a quiet room. The equipment was calibrated with clean 
speech to a presentation level of 65 dB SPL using a sound level 
meter (Brüel&Kjaer 2260) and artificial ear simulation 
(Brüel&Kjaer 4153). The study was approved by the local 
ethics committee. 

Subjects were presented with 2 lists for each condition 
using randomised and latin square balanced orders  
[3 processing strategies (UN, DNN-CO, DNN-AU) x 2 SNRs 
(0, 4 dB) x 2 noises (SSN, BABBLE)]. A short training session 
was performed prior to the proper experiment using 1 list at 10 
dB SNR to acclimatize to the testing procedure. Participants 
were asked to repeat the sentence they heard and the 
experimenter used a graphical user interface to select the 
correctly repeated keywords. Additionally, after a full list was 
presented, the participants were asked to rate the overall sound 
quality on a Likert scale with 7 steps (with labels at 1 - bad, 4 - 
fair and 7 - excellent). Each step of the scale was further 
subdivided into 10 substeps to allow for finer resolution.  

IV.  RESULTS 

A.   Classification accuracy 
HIT-FA scores (Table 1) indicated an advantage of DNN-

AU over DNN-CO in terms of classification accuracy in all 
testing conditions. In the SSN condition, the feature set DNN-
AU provided a benefit of 4% in HIT-FA scores in both 0 and 4 
dB SNR. For the BABBLE noise condition, this advantage 
was reduced to 3% and 2% at 0 and 4 dB SNR, respectively. 

B.   Speech intelligibility scores 
The percentage correct keyword scores are shown in Fig. 3. 

Statistical analysis with repeated measures two-way analysis of 
variance (ANOVA) indicated significant effects of processing 
condition in SSN [F(16,1) = 126.88, p < 0.001] and BABBLE 
[F(16,1) = 17.10, p < 0.001]. Bonferroni-corrected post-hoc 
comparisons showed a significant improvement of the DNN-
AU algorithm over UN in SSN at 0 dB [F(16,1) = 17.20, p = 
0.003] and in BABBLE at 0 dB [F(16,1) = 114.32, p < 0.001] 
and 4 dB SNR [F(16,1) = 18.64, p = 0.0021]. The DNN-CO 
algorithm showed a significant improvement in the BABBLE 
condition at 0 dB [F(16,1) = 47.56, p < 0.001] and 4 dB SNR 
[F(16,1) = 11.95, p = 0.013]. 

C.   Speech quality ratings 
The subjective speech quality ratings of the three 

processing conditions (UN, DNN-CO, DNN-AU) are shown in 
Fig. 4. A non-parametric Friedman’s ANOVA indicated a 
significant effect of processing condition for SSN at +4 dB and 
BABBLE at 0 and +4 dB SNR. Bonferroni-corrected post-hoc 

 
 

 
Fig. 3. Mean speech intelligibility scores of all 17 HI participants for 
unprocessed noisy speech (UN), the comparison feature set based DNN 
algorithm (DNN-CO) and the proposed auditory model based DNN 
algorithm (DNN-AU) for SSN and BABBLE noise. Error bars represent the 
standard error of the mean; (*)p≤0.05, (**)p≤0.01, (***)p≤0.001. 

 

TABLE I. CLASSIFICATION ACCURACY RESULTS 

% HIT-FA 
(FA) 

SSN BABBLE 
0 dB 4 dB 0 dB 4 dB 

DNN-CO 72 (8) 75 (7) 64 (18) 65 (17) 

DNN-AU 76 (7) 79 (7) 67 (18) 67 (18) 
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comparisons showed a significant improvement over the UN 
condition for DNN-AU in SSN at 4 dB SNR [F(16,1) = 11.54 , 
p = 0.015] and in BABBLE at 0 dB [F(16,1) = 15.07, p = 
0.0053] and 4 dB SNR [F(16,1) = 24.07, p < 0.001]. For DNN-
CO there was a significant improvement over UN in quality 
ratings for BABBLE at 0 dB [F(16,1) = 19.98, p = 0.0015] and 
4 dB SNR [F(16,1) = 33.38, p < 0.001]. 

V.   DISCUSSION AND CONCLUSION  
In this study we present a novel auditory-model based 

feature set with application to speech enhancement that builds 
on the framework of recently proposed DNN-based speech 
segregation systems [3][4][8]. The novel feature set combines 
linear GT filter bank features with AIM based features and 
shows superior performance compared to the comparison 
feature set in terms of HIT-FA rate and speech perception 
scores measured with a subjective listening test with hearing-
impaired listeners. We further extend previous studies by 
employing the IRM target function and a range of SNR 
conditions for the training of the DNN to build a system that 
works independently from an SNR-threshold over the most 
relevant range of SNRs for the target users [2]. Furthermore, 
we measured subjective quality ratings in addition to 
intelligibility scores for all processing conditions to investigate 
if ratio-masking based speech enhancement improves the 
perceived quality for hearing-impaired listeners compared to 
unprocessed stimuli. As suggested by [6] and recently 
implemented by [8] we evaluate the system under test in novel 
segments of the noise background that was learned by the 
algorithm.  

Both DNN systems achieved high HIT-FA scores (72-79%) 
with low FA rates (7-8%) in the SSN condition. Even though 
DNN-AU constantly obtained 4% higher HIT-FA scores, we 
did not expect to find such large difference in intelligibility 
scores at 0 dB SNR between the two DNN systems in the 
listening test. Only the DNN-AU algorithm gave a significant 
improvement by 13% at 0 dB SNR. In this case, the chosen 
SNR threshold for conversion into a binary classification 
metric might not be sensitive enough at low SNR levels (0 dB), 
when ratio masks are applied to the noisy input signal. 
Furthermore, speech distortions due to underestimation effects 

are ignored by the HIT-FA metric and might degrade speech 
understanding (e.g. at the easier condition at 4 dB SNR). For 
the BABBLE noise condition, where the advantage in HIT-FA 
scores of the DNN-AU system was slightly reduced to 2-3%, 
reliable and highly significant improvements have been found 
for both DNN algorithms (e.g. 14-16% for DNN-AU over 
UN).     

Comparing to previous supervised speech segregation 
studies, especially to [8], our algorithm was able to reproduce 
the significant improvements in speech intelligibility for 
hearing-impaired listeners even though our system achieved 
smaller improvements in intelligibility (13-16% compared to 
18-44%). There are several potential reasons for this difference 
in performance: Firstly, our DNN-system uses a much smaller 
architecture (2 hidden layers with 100 and 50 units) with 
significantly less training data (several minutes opposed to 
hours in [8]). We chose this DNN-architecture based on a 
previous study evaluating a DNN-based speech segregation 
system for NH participants listening to CI simulations (noise-
vocoded stimuli) [9] where we found the given choice of 
hyper-parameters to constitute a good compromise in terms of 
algorithm complexity and estimation accuracy. Secondly, our 
system estimates the IRM using only features computed from 
the current time frame (i.e. no future frames) thus yielding a 
real-time feasible algorithm. Thirdly, we train only one DNN 
per background noise to generalize over a range of SNR 
conditions that might be a challenging task for such a small 
architecture. Nevertheless, our results are in line with the 
findings of [8] and support the promising application of DNN-
based speech segregation for hearing-impaired listeners. 

In addition to measuring speech understanding we 
investigated whether HI listeners preferred the speech quality 
of the processed speech compared to the unprocessed noisy 
speech. We found consistent improvements in perceived 
quality in SSN for both DNN-systems, again with an advantage 
for the DNN-AU algorithm which achieved a significant 
improvement at 4 dB SNR by about 0.81 rating points. In 
BABBLE, both systems achieved significant improvements in 
all conditions (from 0.5 up to 1 rating point) for the perceived 
speech quality, whereas DNN-AU reached the best quality in 0 
dB and DNN-CO in 4 dB SNR. This finding further supports 
the potential application of DNN-based speech segregation as 
speech enhancement technique for hearing-impaired listeners, 
because for improved speech perception both aspects 
(intelligibility and perceived quality) have to be improved in 
parallel. This indicates a step forward in comparison with 
conventional speech enhancement techniques, which mostly 
improve the listening effort and perceived quality of the noisy 
speech but struggle to show significant improvements in 
intelligibility.  

Overall, the DNN-AU algorithm showed better 
performance in comparison with the DNN-CO algorithm which 
supports the hypothesis that processing techniques inspired by 
the human auditory system are beneficial for technical systems 
that try to improve human perception of speech sounds. 
However, this conclusion is limited to the current setup and 
testing approach we used.  

 
Fig. 4. Mean speech quality ratings of all 17 HI participants for 
unprocessed noisy speech (UN), the comparison feature set based DNN 
algorithm (DNN-CO) and the proposed auditory model based DNN 
algorithm (DNN-AU) for SSN and BABBLE noise. Error bars represent 
the standard error of the mean; (*)p≤0.05, (**)p≤0.01, (***)p≤0.001. 
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One of the main challenges for supervised speech 
separation is its ability to generalize to acoustic environments 
different from the ones seen during training. In this study we 
evaluated the system performance according to [6] on novel 
segments of the background noise and showed that still 
significant improvements are obtained even with a much 
smaller DNN system than previous studies used. In respect to 
applications in real-world hearing devices this might be 
beneficial due to restricted computational and memory 
resources. Still, further aspects of generalization performance 
need to be addressed in future studies that evaluate unseen 
multi-speaker and multi-noise scenarios where further 
optimizations for the training process are likely to be required.  

In conclusion, we presented a DNN-based speech 
segregation algorithm in conjunction with two different feature 
sets and evaluated its performance objectively and in a 
subjective listening test with hearing-impaired listeners. Our 
findings are in line with previous studies and indicate further 
evidence that auditory-model based features are able to 
improve the segregation process. We further add to previous 
studies that reported benefits for speech intelligibility by 
showing that ratio mask based processing improves the 
perceived quality of the noisy speech for HI listeners also in the 
non-ideal case with an estimation algorithm. Significant 
improvements in both perceptual aspects of speech, perceived 
quality and intelligibility, achieved by a more real-time feasible 
algorithm, provide a step forward to real-world applications of 
supervised speech segregation systems for hearing-impaired 
listeners. 
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