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Abstract—Recent variants of Distributed Denial-of-Service (DDoS)
attacks leverage the flexibility of application-layer protocols to dis-
guise malicious activities as normal traffic patterns, while concurrently
overwhelming the target destination with a large request rate. New
countermeasures are necessary, aimed at guaranteeing an early and
reliable identification of the compromised network nodes (the botnet).
In this work we introduce a formal model for the aforementioned class
of attacks, and we devise an inference algorithm that estimates the
botnet hidden in the network, converging to the true solution as time
progresses. Notably, the analysis is validated over real network traces.

Index Terms—Distributed Denial-of-Service, DDoS, Cyber-Security,
Signal Processing for Network Security.

I. MOTIVATION AND RELATED WORK

Communication networks, especially the Internet, emerge more

and more as the favorite attackers’ land to launch a broad variety

of threats. One of the most dangerous attacks is Denial-of-Service

(DoS), a kind of volumetric attack where the target destination is

overwhelmed by a huge number of requests, which eventually lead

to the impossibility of serving any of the users. In its most powerful

variant, the Distributed DoS (DDoS), such requests are produced

in parallel by a botnet, a large net of robots acting cooperatively

under the supervision of a botmaster. The bots may be either

malicious users acting consciously, or legitimate users that have been

preliminarily infected, (e.g., by warms and/or Trojans).

The anomalous request rate is produced in broad daylight, and,

therefore, its detection is not a big concern. The main challenge

is instead ascertaining whether the anomaly is caused by an attack

and identifying the compromised nodes. Successful DDoS mitigation

relies upon an early identification of the botnet, since discriminating

legitimate from malicious users would allow the destination to ban

the latter, without denying the service to the former.

The literature about DoS attacks is abundant, and we refer the

Reader to the survey in [1] as a useful entry-point. The earliest

DoS attacks (see, e.g., TCP SYN flooding) were based on spe-

cific protocol vulnerabilities, and were characterized by a high-rate,

repeated transmission of the same requests from a single user. In

this case, the source of the attack could be simply identified by its

unusually large rate. In contrast, in a DDoS attack, the huge rate

is produced by the botnet as a whole, while the rate of each bot is

kept moderate. This notwithstanding, the bots can be still identified

at a single-user level, because normal traffic patterns are typically

characterized by a certain degree of innovation (for instance, as time

progresses, distinct web-pages are likely to be visited), while the

repetition scheme implicitly emphasizes the bot character. In fact,

several useful inferential strategies have been proposed for such kind

of DDoS attacks, see [1] for an excellent summary.

Recently, a novel class of powerful DDoS attacks is emerging,

which leverage the many possibilities offered by the application

layer, to circumvent the aforementioned repeatability issue [2]–[5]. In

such a novel attacks, the bots choose randomly their requests from

a set of admissible messages (an emulation dictionary), trying so

to disguise their traffic patterns as normal ones. With a sufficient

variety of messages (e.g., the large number of web-pages accessible

in surfing through a certain website), a sufficient degree of variability

is assigned to each individual bot’s pattern, which prevents from

revealing a bot by simple single-user inspection. In this work we first

introduce a formal model to represent the aforementioned new class

of DDoS attacks, and then try to answer the following fundamental

question: Despite the strong power given to the attacker, is it still

possible to consistently unveil the presence of a botnet?

Unfortunately, the existing inferential strategies are not conceived

to face the novel class of DDoS attacks [1]. Some of these strategies

might be in principle open to generalization, but, as far as we can

tell, ready-to-use solutions to our problem are currently unavailable.

Therefore, new inferential solutions are required. To this aim, we

shall follow emerging trends in signal processing for network cyber-

security, to design universal and/or nonparametric inference strategies

— see, e.g., sparsity-aware algorithms for unveiling traffic volume

anomalies [6], [7], or solutions to trace clandestine information

flows across the network [8]–[12]. Such approaches rely neither on

parametric statistical methods (e.g., maximum likelihood, Neyman-

Pearson tests), nor on fully data-driven techniques (e.g., distribution-

free statistical learning, machine learning), since: the former would

require detailed statistical models of the attacks [13]–[15], a condition

that is far from being verified in our setting; while the latter would

typically lack of performance guarantees, analytical results, physical

interpretation, and might require heavy tuning of the algorithms when

the parameters change. The methodologies presented in [6]–[12]

suggest instead to pursue the following principled approach: i) focus

on minimal-and-realistic physical assumptions; ii) build physically-

meaningful descriptive indicators arising from the modeling assump-

tions; iii) develop consequently an inference strategy.

II. THE DDOS ATTACK

Throughout the article we shall imply that: i) the network analyst

has access to the message content of the collected traffic patterns; and

ii) the mere content of a message does not reveal any information

about the nature, legitimate or malicious, of the sender. Moreover,

no statistical models are available for the legitimate users’ activities.

As an indicator of the transmission activity of a given subnet S,

we introduce the empirical transmission rate at time t, namely,

λ̂S(t) ,
NS(t)

t
(1)

where NS(t) is the total number of transmissions occurred in S, up

to a given time t. Whenever a limiting rate (as t goes to infinity) is

meaningfully defined, it will be denoted by λS.

As a second descriptive indicator of the network activity, we define

a quantity that relates to the message content. We are interested

in the new messages that are incrementally produced by the users
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during their activities, namely, in a Message Innovation Rate (MIR).

Let DS(t) denote the empirical dictionary composed by the distinct

messages sent, up to time t, by users within S. The empirical Message

Innovation Rate (MIR) is:

ρ̂S(t) ,
|DS(t)|

t
(2)

In particular, when ρ̂S(t)
p

−→ ρS (the symbol
p

−→ denotes con-

vergence in probability [16]), the limiting value ρS will be simply

referred to as the MIR of subnet S. We stress that the quantities λ̂S(t)
and ρ̂S(t) refer to a generic subnet S, irrespectively of the nature of

the users belonging to S.

Starting from the most recent kind of attacks documented in

the literature [2]–[5], we now introduce a formal DDoS model.

The botnet has at its disposal a sufficiently rich dictionary wherein

it gleans admissible messages to emulate normal patterns. Such

emulation dictionary is learned continually, namely, its cardinality

increases as time progresses, in order to ensure that the bots can

sustain a reasonable innovation rate to emulate normal users. The

(common) dictionary available at time t to all users in the botnet

will be denoted by E (t). The richness of the emulation dictionary

is quantified through the cardinality of the dictionary per unit time,

which provides the Emulation Dictionary Rate (EDR):

α , lim
t→∞

|E (t)|

t
(3)

Accordingly, the EDR rules the variability in the emulated traffic

patterns (in a precise quantitative way that will be revealed by the

forthcoming theorem). We see that our formal model includes as

a special case the simplest attack using always the same repeated

pattern (α = 0). Following [2]–[5], we focus on a randomized

strategy where, at each time instant t, each botnet member picks,

uniformly at random, a message from the available emulation dictio-

nary E (t). The probability of a particular message is accordingly

1/|E (t)|. Thus, for any given subnet B of the overall botnet, a

certain empirical dictionary DB(t) is constructed at time t. Given

the empirical dictionary DB(t), at time t+ τ the number of distinct

messages increases by the number of distinct messages not contained

in DB(t), which have been picked during the interval τ by the bots

belonging to B. Now, assume that all bots act synchronously each

1/λ seconds, and let dn = E[|DB(n/λ)|], and en = |E (n/λ)|.
Neglecting the possibility that two or more bots pick the same

message during the same time interval, we have:

dn = dn−1 +B

(

1−
dn−1

en

)

, (4)

where B = |B|. Assuming further that a limiting MIR exists, and that

we can use the approximation dn−1/en ≈ ρB/α, we have, iterating

over n and setting d0 = 0:

dn ≈ dn−1 +B
(

1−
ρB
α

)

⇒ dn ≈ nB
(

1−
ρB
α

)

, (5)

which, considering that in the synchronous case the aggregate rate

of B is simply λB = Bλ, yields:

dn
n/λ

n→∞
−→ ρB = Bλ

(

1−
ρB
α

)

⇒ ρB =
αλB

α+ λB

. (6)

The latter intuitive explanation can be in fact made rigorous. More

precisely, the forthcoming theorem provides a closed-form expres-

sion for the MIR of a botnet, when the transmission schedulings

are either synchronous with constant rate, or independent Poisson

processes [17]. The corresponding mathematical proof is substantially

more involved. Due to space limitations, the necessary technical

details (as well as those relevant to Theorem 2) will be reported

elsewhere [18], and are available upon request. Let us preliminarily

introduce the function R(α, λ) , αλ
α+λ

.

THEOREM 1 (Botnet MIR). Consider a botnet Btot launching

a DDoS attack, where the node transmission policies are either

synchronous with constant transmission rate, or independent Poisson

processes, with rates λu, for u ∈ Btot. Consider a subset of the

botnet B ⊂ Btot. Let E (t) be the emulation dictionary available to

the botnet, with emulation dictionary rate α, and let DB(t) be the

empirical dictionary of the subnet B at time t. Then, the message

innovation rate of B is:

|DB(t)|

t

p
−→ ρB = R(α, λB) (7)

where λB =
∑

u∈B
λu is the aggregate transmission rate of the

considered botnet subset. �

Exploiting the definition of R(α, λ) and (7), an empirical estimator

of α based on the messages in the subnet S is:

α̂S(t) ,
λ̂S(t) ρ̂S(t)

λ̂S(t)− ρ̂S(t)
(8)

and, hence, the empirical MIR ρ̂S(t) can be conveniently expressed

as:

ρ̂S(t) = R(α̂S(t), λ̂S(t)) (9)

Note that the latter expression holds irrespectively of the nature of the

users in S, even if the interpretation of α̂S(t) in terms of emulation

dictionary does not necessarily hold for normal users.

III. BOTNET IDENTIFICATION CONDITION

The common emulation dictionary used by the botnet to launch the

attack implies a certain degree of correlation between the empirical

dictionaries of the bots. In contrast, the empirical dictionaries of two

normal users (or of a normal user and a bot) are expected to be

weakly correlated, due to the independence of their activities, some

partial overlap arising due to common interests, popular web-pages,

peculiar website structure, and so on. In our setting, a convenient way

to measure the degree of dependence is provided by the empirical

message innovation rate in (2). Then, in order to develop a botnet

identification algorithm, we can use as reference case (i.e., as identi-

fication threshold) for a malicious behavior, the MIR corresponding

to the activity performed by a botnet. Let us start by considering the

simplest case that we must decide whether users 1 and 2 belong to

a botnet. Assume for now that the empirical EDRs of the two users

obtained through (8) are comparable, namely, that α̂1 ≈ α̂2 ≈ α̂, the

explicit dependence on t having been suppressed for ease of notation.

When both users belong to a botnet, in view of Theorem 1, for t large

enough we can write ρ̂{1,2} ≈ R(α̂, λ̂1 + λ̂2) , ρ̂bot. On the other

hand, irrespectively of the nature of the users, the empirical MIR of

the aggregate subnet {1, 2} is certainly upper bounded by the sum

of the individual MIRs, namely, ρ̂{1,2} ≤ R(α̂1, λ̂1) +R(α̂2, λ̂2) ≈

R(α̂, λ̂1) +R(α̂, λ̂2) , ρ̂sum. Therefore, since ρ̂bot < ρ̂sum, it makes

sense to introduce a threshold γ lying between the two points ρ̂bot

and ρ̂sum. Formally, for ǫ ∈ (0, 1), we set γ = ρ̂bot + ǫ(ρ̂sum − ρ̂bot).
If the two users belong to a botnet, from Theorem 1 we conclude

that the empirical MIR ρ̂{1,2} shrinks down to the value ρ̂bot for
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sufficiently large t: for any ǫ > 0, as time progresses, the empirical

MIR will stay sooner (higher ǫ) or later (lower ǫ) below the threshold

γ, namely, 1 AND 2 are bots ⇒ ρ̂{1,2} < γ. Consider now the case

that at least one user is normal. Now, were the dictionaries of the two

users perfectly disjoint, we should observe that ρ̂{1,2} ≈ ρ̂sum > γ.

However, in the (realistic) case that some overlap between the two

dictionaries exists, it is also natural to assume that such a dependence

is weaker than the dependence pertaining to groups of bots (since

the latter choose their messages from one and the same emulation

dictionary). Accordingly, we might expect that, when at least one

user is normal, for sufficiently small ǫ, the empirical MIR still stays

above the threshold, namely, 1 OR 2 are normal ⇒ ρ̂{1,2} > γ.

Unfortunately, there is an important complication that has been

deliberately neglected so far. According to the above explanation, we

need to compare the empirical MIR to the MIR of a reference botnet.

However, a botnet is characterized by a common underlying EDR,

corresponding to a unique value of α, while in practice we shall have,

especially when at least one user is normal, α̂1 6= α̂2. One approach

could be that of discarding ab initio the botnet hypothesis whenever

α̂1 and α̂2 are too dissimilar. However, the qualification of being

“too dissimilar” translates into the appearance of some extra tuning

parameter, possibly depending on time, which we want definitely

to avoid. On the other hand, the naı̈vest choice of considering as

reference value the arithmetic average 1/2(α̂1 + α̂2) does not work,

since it can be shown that, even for the case of disjoint dictionaries,

the empirical MIR can be smaller than that of a botnet with reference

EDR given by the arithmetic average.

In order to overcome such difficulties, we now illustrate a sys-

tematic way to select a reference value for α̂. Let us consider two

disjoint subnets S1 and S2, with focus on the case that at least one of

them is composed only by normal users, with α̂S1
6= α̂S2

. Starting

from the original traffic patterns, we want to build (fictitiously) new

traffic patterns by replacing and reassigning the messages between the

subnets S1 and S2, in such a way that i) the joint MIR of the aggregate

subnet S1 ∪ S2 is left unchanged and ii) the empirical EDRs after

replacement and reassignment are equal, namely, α̂′
S1

= α̂′
S2

= α̂′.

The aforementioned procedure is defined by the following steps.

1. Replacement of repeated messages. The traffic pattern of a subnet

S contains |DS| distinct messages, the remaining NS − |DS| ones

being repetitions of messages contained in DS. The first step of the

procedure amounts to replacing the NS − |DS| messages by one and

the same message contained in DS. The replacement is applied to

both subnets S1 and S2. Obviously, replacement leaves unaltered the

transmission rates as well as the various MIRs.

2. Reassignment of messages. In order to reach a common α̂, some

messages from one subnet will be reassigned to the other subnet. We

denote by ∆ the rate of distinct messages of S2 that are reassigned to

S1, with the convention that a negative ∆ corresponds to messages of

S1 that are reassigned to S2. Obviously, the admissible values for ∆
must obey the inequalities: ∆ ≤ ρ̂S2

and −∆ ≤ ρ̂S1
. For instance,

if messages from S2 are reassigned to S1, the rate of reassigned

messages cannot exceed the rate of distinct messages owned by S2.

Note also that the reassignment leaves unaltered the overall MIR, as

well as the overall number of transmissions in the aggregate network

S1∪S2. Now, since for sufficiently large t the contribution of a single

message is irrelevant, we can safely assume that the reassignment

does not include the single messages that form the repeated-messages

sets. Furthermore, we can assume that it is always possible to reassign

messages that do not belong to the intersection of the two empirical

dictionaries, since the degree of correlation between the two traffic

patterns is low (one of the subnets being normal). In summary, after

reassignment, the individual transmission rates and MIRs of subnets

S1 and S2, are, respectively, (λ̂′
S1
, λ̂′

S2
) = (λ̂S1

+∆, λ̂S2
−∆), and

(ρ̂′
S1
, ρ̂′

S2
) = (ρ̂S1

+∆, ρ̂S2
−∆).

3. Choice of ∆ for the equilibrium condition. In order to get a com-

mon reference EDR α̂′, we enforce the condition α̂′
S1

= α̂′
S2

= α̂′.

Using (8), such condition amounts to α̂′ = λ̂′
S1
ρ̂′
S1
/(λ̂′

S1
− ρ̂′

S1
) =

λ̂′
S2
ρ̂′
S2
/(λ̂′

S2
− ρ̂′

S2
). In the light of the above explanation, this is

equivalent to seek a value ∆⋆ such that:

α̂′ =
(λ̂S1

+∆⋆)(ρ̂S1
+∆⋆)

λ̂S1
− ρ̂S1

=
(λ̂S2

−∆⋆)(ρ̂S2
−∆⋆)

λ̂S2
− ρ̂S2

. (10)

The explicit formula for ∆⋆ is then found by solving a quadratic

equation, and it is possible to show that the solution fulfilling the

admissibility conditions ∆ ≤ ρ̂S2
and −∆ ≤ ρ̂S1

is:

∆⋆ =
λ̂S1

λ̂S2
− ρ̂S1

ρ̂S2

(λ̂S1
− ρ̂S1

)− (λ̂S2
− ρ̂S2

)

−

√

(λ̂S1
− ρ̂S1

)(λ̂S2
− ρ̂S2

)(λ̂S1
+ ρ̂S2

)(λ̂S2
+ ρ̂S1

)

(λ̂S1
− ρ̂S1

)− (λ̂S2
− ρ̂S2

)
.

(11)

Now, note that:

ρ̂sum(S1, S2) , R(α̂S1
, λ̂S1

) + R(α̂S2
, λ̂S2

)

= [R(α̂S1
, λ̂S1

) + ∆⋆] + [R(α̂S2
, λ̂S2

)−∆⋆]
(a)
= R(α̂′, λ̂′

S1
) + R(α̂′, λ̂′

S2
)

(b)
> R(α̂′, λ̂′

S1
+ λ̂′

S2
)

(c)
= R(α̂′, λ̂S1

+ λ̂S2
) , ρ̂bot(S1, S2), (12)

where (a) follows by conservation of the sum of MIRs; (b) follows

by Theorem 1, since, given a botnet S1 ∪ S2, for generic values

α, λ1, λ2 ∈ R
+, the function R(α, λ1) + R(α, λ2) can be regarded

as the sum of the individual MIRs, while the function R(α, λ1+λ2)
can be regarded as the MIR of the whole botnet; and (c) follows by

conservation of the sum of transmission rates.

Let us switch now to the case that S1 and S2 form a botnet. Theo-

rem 1 implies that, for t large enough, α̂S1
≈ α̂S2

≈ α̂′ ≈ α. There-

fore, in this case the inequality ρ̂sum(S1, S2) > ρ̂bot(S1, S2) is justified

by the approximations: ρ̂sum(S1, S2) ≈ R(α, λS1
) + R(α, λS2

) and

ρ̂bot(S1, S2) ≈ R(α, λS1
+ λS2

).
In summary, we have shown that, for arbitrary transmission

schedulings, as well as for arbitrary message-picking policies, the

reference EDR value (10) arising from the proposed strategy does

always provide a lower bound to the sum of individual MIRs (i.e.,

the perfectly disjoint case). Therefore, it makes sense to introduce an

intermediate threshold γ(S1, S2) = ρ̂bot(S1, S2) + ǫ [ρ̂sum(S1, S2) −
ρ̂bot(S1, S2)].

We are now ready to characterize the interaction between the

empirical MIR and the threshold. When S1 and S2 form a botnet,

we have, at least for sufficiently large t:

ρ̂S1∪S2
< γ(S1, S1) (13)

When at least one subnet is normal, it is realistic to assume that

the degree of dependence is consistently lower than the degree of

dependence occurring when both subnets form a botnet. Since the

replacement-and-reassignment procedure does preserve the empirical

MIR of S1 ∪ S2, it makes sense referring to the new traffic patterns,
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and using for the reference botnet an EDR equal to α̂′. Otherwise

stated, it is reasonable to assume that the empirical MIR, even if

not coinciding with the upper bound ρ̂sum(S1, S2), is still sufficiently

far from the lower bound ρ̂bot(S1, S2). The latter observation corre-

sponds, at least for small ǫ, to the following identification condition.

Botnet Identification Condition

Let S1 and S2 be two subnets with S1
⋂

S2 = ∅. If at least one of

the subnets is composed only by normal users:

ρ̂S1∪S2
≥ γ(S1, S2) (14)

�

The latter condition characterizes the behavior of the MIR when at

least one subnet is made of normal users.

IV. BOTBUSTER: THE BOTNET IDENTIFICATION TEST

Given two disjoint subnets, Eqs. (14) and (13) would allow

discriminating the situation where both subnets are part of a botnet,

from the situation where at least one of them is made of normal users.

Such a basic property can be exploited to design the identification

algorithm described by the pseudo-code reported in the right column

above. Let us examine quickly how the algorithm works. At the

beginning of the algorithm, user 1 is initially declared as a bot,

namely, B̂ = {1}. Then, it is checked whether users 1 and 2 form

a botnet. If so, B̂ = {1, 2}, otherwise B̂ = {1}. Then, it is checked

whether the currently estimated botnet B̂ forms a bot with user 3, and

so on. At the end of the inner loop, the algorithm ends up with an

estimate B̂. If the cardinality of the estimated set is greater than one,

it is taken as a current estimate. The procedure restarts by choosing

user 2 as initial pivot, and sequentially checking the remaining users

as explained before. At the end of the inner loop, the algorithm ends

up with another estimate B̂. If the cardinality of the estimated set

is greater than one and greater than the cardinality of the previously

estimated set, then it is taken as a current estimate. Otherwise, the

previous estimate is retained. The procedure ends when all users have

been scanned as pivots.

With regards to the computational burden, we see that the com-

plexity is O(N2). Moreover, in view of its looping structure, the

algorithm is open to parallelization, which can be useful when

working with large networks. With regards to the inference perfor-

mance, we see that, under the botnet identification condition in (14),

all checks performed by the algorithm will give the right answer,

with probability tending to 1 as t goes to infinity. The BotBuster

algorithm is accordingly expected to provide a consistent estimator

of the underlying botnet. To see this, let us introduce a quantitative

measure of the inference performance. With reference to a network

N = {1, 2, . . . , N}, containing a botnet B, and letting B̂(t) be the

botnet estimated at time t by the BotBuster algorithm, we introduce

the two performance indices:

ηbot(t) =
E[|B̂(t) ∩B|]

|B|
, ηnor(t) =

E[|B̂(t) ∩ (N \B)|]

|N \B|
, (15)

namely, the expected fraction of correctly banned users (i.e., discov-

ered bots), and the expected fraction of incorrectly-banned users (i.e.,

normal users erroneously declared as bots). Clearly, ηbot(t) (resp.,

ηnor(t)) is not defined when B = ∅ (resp., when B = N). We would

like to see ηbot(t) → 1, and ηnor(t) → 0 as t goes to infinity. Under

the ideal assumption that the condition in (14) is always verified,

such requirement is in fact fulfilled, as stated, without proof, in the

following theorem.

Algorithm 1: B̂new=BotBuster

N = {1, 2, . . . , N}; B̂new = ∅;

for b0 ∈ N do

B̂ = {b0};

for j ∈ N \ {b0} do

if ρ̂(B̂ ∪ {j}) < γ(B̂, {j}) then

B̂ = B̂
⋃

{j};

end

end

if |B̂| > max(1, |B̂new|) then

B̂new = B̂;

end

end

THEOREM 2 (Consistency of BotBuster). Consider a network

N = {1, 2, . . . , N}, containing a botnet B (the case B = ∅ is admit-

ted), launching a randomized DDoS attack. The bots’ transmission

policies are either synchronous with constant transmission rate, or

independent Poisson processes, while the normal users’ transmission

policies are arbitrary. If condition (14) holds, then, for any finite

emulation dictionary rate α, the BotBuster algorithm is consistent,

namely,

lim
t→∞

ηbot(t) = 1, lim
t→∞

ηnor(t) = 0 (16)

�

Were the condition in (14) exactly verified, extracting the estimated

botnet with highest cardinality is unnecessary. However, in real-world

applications, assuming that (14) is verified for all normal/normal, and

botnet/normal interactions, as well as for all time epochs, is definitely

an over-idealized assumption. In practice, spurious clusters of normal

users might be erroneously included in the botnet estimated by the

algorithm. What is expected to remain true is that the occurrence

of such cases is rare and that the spurious clusters are small. Since

DDoS with small botnet sizes make little sense, estimated botnets

of unreasonably small cardinality should be easily ruled out by

the maximum-extraction performed by the algorithm, and the final

estimate should contain the true botnet plus, possibly, a small fraction

of normal users. Therefore, even under non-ideal conditions, it is

expected that ηbot(t) converges to 1 as time progresses, whereas

ηnor(t) possibly takes on some relatively small value.

V. EXPERIMENTAL RESULTS

The analysis conducted so far is mainly theoretical, and, hence,

relies upon several assumptions. Thus, when dealing with real

network traces, and with challenging DDoS attacks, the operational

validity of the algorithm BotBuster is not at all obvious. This fact

motivates the experimental analysis that we are going to illustrate. A

popular e-commerce website has been selected as target destination

of the attack. About 20 minutes of (application-layer) traffic have

been collected, from 10 students and/or researchers of our laboratory,

carrying on their surfing activity almost independently. The streams

have been partitioned into 2-minutes chunks.

The DDoS attack has been generated as described in Sec. II. Given

the ensemble of distinct messages obtained from the whole recorded

activity, at epoch t, the emulation dictionary E (t) is constructed by

taking the first ⌊e0 + αt⌋ messages of such ensemble (e0 is the

initial dictionary size and α is the EDR). Independently at each
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ǫ = 0.05, ηbot
ǫ = 0.1, ηbot
ǫ = 0.2, ηbot
ǫ = 0.05, ηnor
ǫ = 0.1, ηnor
ǫ = 0.2, ηnor

Fig. 1. Fraction of banned users as a function of time, estimated over 100 Monte
Carlo runs, for different values of ǫ. The network is made of 10 normal users and 10
bots. Solid curves refer to ηbot(t), dashed curves to ηnor(t).

bot, a Poisson time-scheduling is randomly generated and, per each

transmission epoch, each bot picks at random from the emulation

dictionary available at that transmission epoch.

In Fig. 1 we display the results corresponding to a network with

10 normal users and 10 bots using an emulation dictionary with

e0 = 100 and α = 10. We remark that such a value is compatible

with some of the empirical values α̂ estimated over the normal

users’ traces, which implies that no particular inference could be

made by simply examining the single-user behavior. The points

of each curve refer to the output of the algorithm taken each 1
seconds, and the performance is averaged over 100 Monte Carlo

trials. Per each trial, the trace of a given normal user is chosen

at random among its available 2-minutes chunks. The algorithm is

run for three values of the threshold parameter ǫ ∈ (0, 1). First,

we remark that the dashed curves are in practice invisible, implying

that the fraction of erroneously banned users ηnor is almost zero for

all the considered values of ǫ. Such an evidence suggests that the

spurious-and-small estimated clusters containing normal users can be

efficiently ruled out by the fact that the algorithm selects, as a final

estimate, only the cluster with maximum size, which is expected

to contain only bots. Let us then switch to the analysis of ηbot.

The average fraction of correctly identified bots is relatively high

(> 80%), even at the beginning of the monitoring activity. Then, ηbot

increases, approaching unity as time progresses, in perfect accordance

with Theorem 2. Moreover, the performance increases as ǫ increases

from 0.05 to 0.2. In fact, increasing ǫ makes easier staying below

the threshold, which in turn facilitates the inclusion in the estimated

botnet. The excellent performance delivered by the algorithm when

the threshold parameter spans the range (0.05, 0.2) reveals that the

algorithm is so flexible that a fine tuning of the threshold parameter

can be avoided (recall that 0 < ǫ < 1, and that ǫ must be small,

since otherwise (14) would be clearly violated). We conclude that

the choice of the threshold is not critical.

In Fig. 2, the incidence of the EDR on the algorithm performance

is examined. We considered e0 = 100, and three values of the EDR

α. First, irrespectively of the value of α, ηnor stays approximately

constant at 0, which matches our previous evidences. Switching to

ηbot, we see again that all the curves increase as time progresses,

eventually approaching unity. With regards to the dependence of

performance upon the EDR, we see that the curves corresponding to

ηbot move upward as α is decreased. Indeed, increasing α corresponds
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ǫ = 0.2, for different EDRs

 

 

α = 0, ηbot
α = 10, ηbot
α = 50, ηbot
α = 0, ηnor
α = 10, ηnor
α = 50, ηnor

Fig. 2. Fraction of banned users as a function of time, estimated over 100 Monte
Carlo runs, for different values of α. The network is made of 10 normal users and
10 bots. Solid curves refer to ηbot(t), dashed curves to ηnor(t).

to increasing the learning ability (i.e., the power) of the botnet,

which in turn corresponds to decreasing the inference performance

of the algorithm. We remark that the uppermost curve refers to the

degenerate case α = 0, which corresponds to the well-documented

(and simpler) case where the botnet uses repeatedly the same patterns.
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