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Abstract—Recent achievements in hyperspectral imaging (HSI)
demonstrated successfully a novel snapshot mosaic sensor ar-
chitecture, enabling spectral imaging in a truly compact way.
Integration of this new technology in handheld devices neces-
sitates efficient compression of HSI data. However, due to the
specific mosaic structure of the acquired images, traditional
compression methods tailored to full-resolution HSI data cubes
fail to exploit the special spatio-spectral interrelations among the
pixels. This paper introduces an efficient and computationally
tractable compression technique for mosaic HSI images. Specif-
ically, an appropriate decorrelator is constructed for exploiting
the spatio-spectral redundancies among the pixels, by modeling
the filters arrangement on the mosaic HSI sensor as a multiple-
input multiple-output antenna array. Doing so, the decorrelator
depends only on the sensor and not on the data to be compressed.
Comparison with state-of-the-art compression methods designed
for HSI data cubes reveals that our approach achieves better
reconstruction quality at lower bits-per-pixel rates.

Index Terms—Hyperspectral data, snapshot mosaic hyperspec-
tral sensor, image compression, spatio-spectral decorrelation.

I. INTRODUCTION

Hyperspectral imaging (HSI), or imaging spectroscopy,
combines the power of digital imaging and spectroscopy. For
each pixel in an image, a hyperspectral camera acquires the
light intensity (radiance) for a large number, typically a few
tens to several hundreds, of contiguous spectral bands. Thus
every pixel in the image contains a continuous spectrum (in
radiance or reflectance), which can be used to characterize the
objects in the scene with great precision and detail.

Recent technological advances in sensor design and process-
ing speed have enabled a wide range of HSI applications in
spaceborne remote sensing [1], industrial quality control [2],
medicine [3], and biophysics [4]. Due to the rich information
content of HSI measurements, there is a well-founded need for
designing efficient compression algorithms in order to reduce
the vast amount of data without degrading their quality.

Compression of HSI data is a challenging task, especially
due to the huge amount of information, and the differences
between the spatial and spectral correlation properties among
the pixels. This challenge becomes even bigger with the
latest achievements in the design of highly compact, low-cost,
snapshot mosaic (SSM) imaging sensors, which pave the way
for even more HSI applications by exploiting the advantages
of snapshot acquisition. Due to the specific mosaic structure
of SSM sensors, existing compression methods, which better

978-0-9928-6265-7/16/$31.00 ©2016 |IEEE

adapt to full-resolution HSI data cubes, may fail to handle the
reduced spatio-spectral pixel correlations of SSM HSI images.

In this paper, a computationally tractable method is in-
troduced for efficient lossless/lossy compression of mosaic
HSI images. Specifically, motivated by the spatio-spectral
properties of multiple-input multiple-output (MIMO) antenna
arrays, an appropriate spatio-spectral decorrelator is designed,
which adapts to the specific arrangement of the filters on
the mosaic sensor, thus it is computed only once for a
given SSM sensor. Then, we employ a hybrid approach by
first compressing across the spectral dimension, followed by
a two-dimensional spatial compression of the transformed
spectral bands. The experimental evaluation reveals for a given
bits-per-pixel budget, our proposed method exhibits a better
reconstruction performance when compared against state-of-
the-art methods designed for full HSI data cube compression.

The rest of the paper is organized as follows: Section II
describes the major technical features of a novel SSM image
sensor designed by IMEC. Section III analyzes our proposed
method for efficient, yet computationally effective, compres-
sion of mosaic HSI data. In Section IV, the performance of our
method is evaluated in terms of the image reconstruction qual-
ity as a function of the achieved compression ratio (expressed
in bits-per-pixel), and it is compared against state-of-the-art
methods tailored to full-resolution HSI data cubes. Finally,
Section V summarizes the main outcomes of this study and
gives directions for further improvements.

II. IMEC’s SSM HYPERSPECTRAL IMAGE SENSOR

When acquiring a three-dimensional (3D) hyperspectral data
cube, there are four basic technologies, each with its own ad-
vantages and limitations. These technologies include: 1) Spa-
tial Scanning: sensor output is either a two-dimensional (2D)
full slit spectrum (push-broom scanner) or a one-dimensional
(1D) full point-like spectrum (whisk-broom scanner). Platform
movement or scanning, using complex mechanical parts, is
required to capture a scene; 2) Spectral Scanning: sensor out-
put represents a 2D monochromatic spatial map of the scene.
Spectral smearing can occur if there is movement within the
scene; 3) Spatio-spectral Scanning: sensor output represents
a 2D wavelength-coded (staircase-like) spatial map of the
scene. Scanning is required to capture the spectral content of
a scene; 4) Non-scanning (Snapshot HSI): a single 2D sensor
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(a) SSM HSI imager

(b) Filters arrangement

Fig. 1: SSM HSI imager used in our experimental setup, along
with the filters arrangement on the 5 x 5 mosaic pattern.

output contains the full spatial and spectral information of a
scene. Snapshot acquisition enables higher light throughput
and shorter acquisition times. However, the extensive use
of snapshot hyperspectral imagers has been hindered mainly
because of the high manufacturing cost.

Fortunately, recent advances in the design of snapshot
imaging sensors alleviate the limitations of previous sen-
sor architectures. In particular, IMEC! has launched a new
generation of SSM imagers [5], whose filter structures are
processed on commercially available CMOS sensor wafers,
enabling extremely compact, low-cost and mass-producible
HSI devices. The newly developed mosaic sensors have one
spectral filter deposited per pixel, arranged in mosaics of 4 x 4
(16 spectral bands) or 5 x 5 (25 spectral bands) covering an
array of about 2 Megapixels. Their extended spectral range
offers unique advantages compared to existing HSI linescan
sensors for applications in which scanning is not practical.

Without loss of generality, in this study we rely on the 5 x 5
mosaic pattern. We should note that our proposed compression
method, to be analyzed in Section III, is applicable to any
Ny, x Ny, mosaic pattern (INy,, and Ny, denote the number
of filters along the vertical and horizontal direction, respec-
tively) and filter arrangement. Fig. 1a shows the camera, which
is used to capture HSI images for our experimental evaluation.
This camera is manufactured by Ximea” and is equipped with
IMEC’s 5 x 5 SSM sensor whose filters arrangement is shown
in Fig. 1b. The sensor size (height x width) is 1088 x 2048
with an active area of 1080 x 2045 pixels. In the case of a
5 x 5 mosaic, this yields a spatial resolution of 216 x 409
pixels per band, which are stored using 10 bits-per-pixel. The
spectral resolution is equal to 25 bands, which span the range
600 — 1000 nm (Visible-NIR) with a spectral bandwidth (Full
Width at Half Maximum (FWHM)) of 15 nm.

The specific mosaic structure of the SSM sensors poses
certain constraints on the way of processing the acquired
images. Specifically, it is important to account for the fact
that each pixel captures a single wavelength, while the same
wavelength appears again every 5 pixels in both the vertical

1 http://www2.imec.be/be_en/home.html
2Ximea MQO22HG-IM-SM5X5-NIR sensor: http://goo.gl/nP4Bqg

and horizontal direction (or, for a generic mosaic pattern, every
Ny, and Ny, pixels in the vertical and horizontal direction,
respectively). As a result, neighboring pixels in the same
spectral band do not correspond to adjacent pixels in the actual
scene. It is exactly this unique spatio-spectral arrangement
among the distinct pixels of a SSM sensor which makes the
compression of mosaic HSI images a challenging task.

III. COMPRESSION OF SSM HYPERSPECTRAL IMAGES

Existing scanning-based acquisition systems produce as an
output a full-resolution HSI data cube. These data are typically
characterized by strong correlations across their spectral bands,
which are exploited by applying a 1D spectral decorrelating
transformation prior to spatial coding. The state-of-the-art for
compressing HSI data cubes includes techniques which are
based on predictive compression [6], [7], vector quantiza-
tion [8], [9], and transform coding (e.g., by applying a 3D
wavelet transform on the full data cube [10], or a combi-
nation of a 1D spectral decorrelator, such as the Karhunen-
Loeve transform (KLT) [11] or principal components analysis
(PCA) [12], followed by JPEG2000).

Although the above methods exploit efficiently the spatio-
spectral redundancies, they may be proven inefficient in the
mosaic case. Furthermore, techniques that utilize KLT or PCA,
which present a high spectral decorrelation performance in the
full-resolution case, require an update of the associated trans-
form matrices based on the input data, increasing significantly
the overall computational burden.

In the following, we introduce a compression method for
SSM images, which adapts to the specific mosaic structure
of the sensor. The proposed method is motivated by the
spatio-spectral properties of a multiple-input multiple-output
(MIMO) antenna array, which is seen as an analogue to a
mosaic pattern. Doing so, we overcome the limitations of
previous methods when compressing mosaic HSI images,
by adapting to the structure of the mosaic sensor, which is
fixed, rather than to the acquired data. We also note that in
the following, we focus on the design of the compression
module, while the standard rate allocator and entropy coder
of JPEG2000 are employed for the encoding part.

A. MIMO Antenna Arrays Analogue to SSM Imagers

The motivation for the design of our proposed compression
method for mosaic images emerges from the observation that
the mosaic pattern of a SSM sensor resembles a MIMO
antenna array. Indeed, each filter of the mosaic pattern can
be considered as an antenna on the planar array, with known
filter response. The benefit of considering the SSM sensor as
an antenna array is that we are capable of exploiting the well-
known spatio-spectral correlation properties of MIMO antenna
arrays, which depend on the arrangement and configuration of
the antennas on the plane, or, equivalently, of the filters on
the mosaic pattern of our SSM sensor. Doing so, we are able
not only to exploit redundancies across the spectral bands, but
also to account for the spatial effects of the mosaic structure.
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B. Spatio-Spectral Decorrelation for SSM Sensors

Concerning the inter-filter spatial correlation, a single coeffi-
cient model was introduced in [13]. For simplicity, we consider
a regular grid of equidistant filters both horizontally and
vertically, at distance d. Let ps = p(d) denote the correlation
coefficient between two adjacent filters, and Ny be the total
number of filters (e.g., Ny = 25 for the 5 X 5 mosaic pattern).
Then, the spatial correlation matrix, Rg, of the antenna array
has the following Toeplitz structure

1 s p4 p(Nf_l)2
s s
(Ny—2)?
S 1 S S
Ry=| " . g g
.7 2 .7 2 -7: 2 ' )
p{Ne T pNs =R N 1
(D

To account for the specific spatial arrangement of the filters
on the mosaic pattern, first, an order is assigned to each filter
according to its position in the sorted wavelenghts vector (e.g.,
the bottom right filter of the 5 x5 pattern in Fig. 1b corresponds
to the 7th smallest wavelength). Fig. 2a shows this spatial
ordering of the filters according to an increasing wavelength.
Then, the normalized (Euclidean) distance is computed for
each pair of filters f;, f;, that is, d;; = d(fi, f;) for
ia j =1,... 7Nf (e~g-: d(f27f21) =1, d(f21af3) = 2\/5) By
combining this spatial ordering with (1), we get the following
generalization for the spatial correlation matrix of a SSM
sensor

1 pd1'2 pdle o pdl’Nf
S S S
da 1 da,3 d2, Ny
’ 1 p ’ “ e p
SSM Ps s s
Rg™ = . . . . - (@
dn, 1 dn, 2 dn, 3
Ps s s ! s 4 1

The choice of ps may affect the accuracy of R¥M. Although
estimating precisely the value of p, for our mosaic pattern is
still an open issue, however, by varying ps in [0.9, 1) typically
suffices for achieving a high compression performance. A
more thorough study for the optimal selection of p, is currently
under way.

Similarly, the spectral correlation matrix, R, of the an-
tenna array is given by [14]. More specifically, let py denote
the correlation coefficient between two adjacent filter ele-
ments, where the adjacency depends on the spectral resolution
(1nm for our SSM sensor), and f; be the center frequency
of the ¢-th filter, with the filters being sorted in ascending
wavelength as in the spatial correlation case. Then, the spectral
correlation matrix is modeled as follows,

Ne—1
1 ps P} p{Vf
o? Pf 1 Py Pyl
Ry = !
Ne | : : ’
N;—1 Np—2 N;—3
Pff pff Pff 1
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Fig. 2: a) Sorted filter positions on original mosaic pattern
according to increasing wavelength; b) Correlation coefficients
among the filter responses of our 5 x 5 mosaic pattern. Bottom
curve shows the correlation coefficients for 1 nm-adjacency.

where 0]20 represents the energy of the filter response. In the
above formulation it is assumed that the center frequencies
of the filters are normalized, that is, f; = ¢. However, this
assumption can be generalized by considering directly the real
center frequencies of the mosaic pattern’s filters. Then, by
defining f; ; = |fi — f;| as the absolute difference between
the center frequencies, we get the following expression for the
spectral correlation matrix of a SSM sensor,

1 pf1,2 pf1,3 pflva
A
2 2,1 2,3 2,N¢
RSSM _ 95| Py 1 Py Py
r Nf . . .
fnea fnp2 fng.s
Py ! Py ! Py ! 1

(4)
The precise computation of U]% for our sensor is currently un-
der study. However, since the scalar multiple of a matrix does
not affect its eigenvectors, for simplicity we ignore the factor

2
1%. The coefficient py is computed directly by averaging all
pairwise correlation coefficients among the responses of the
filters which are 1nm-adjacent. Fig. 2b shows the pairwise
correlation coefficients between all the filter responses, while
the bottom curve corresponds to the correlations for 1nm-
adjacent wavelengths.

Having constructed the two correlation matrices, R%SM and
R%SM, for the SSM sensor, then, motivated by [15], the joint
spatio-spectral correlation matrix RN is obtained as the
Schur-Hadamard product

RGP = RFMORPY, 5)

where © denotes the element-wise matrix multiplication.

Let X € NVv*Nu denote a mosaic HSI image, where Ny x
Ny is the active area of the sensor, which is tiled with a
mosaic pattern of size Ny, x Ny, yielding Ny = Ny, - Ny,
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Fig. 3: Proposed compression pipeline for SSM HSI images.

spectral bands of size N, x N, . Let also b™ denote the
n-th band (n = 1,..., Ny), bi'; be the pixel located in row
1(@=1,...,Np,) and column j@G=1...,Ny,) of the n-
th band, and b; ; = [b] ;,b7, ... ,bf\;] denote the spectral
vector for the (4, j)-th pixel. In our case, Ny = 1080, Ny =
2045, and Ny, = Ny, = 5 resulting in 25 spectral bands of
size 216 x 409 pixels per band.

Following a PCA-based compression philosophy, first we
decorrelate the spectral vectors, b; ;, by projecting onto an
appropriate subspace. To this end, we compute the matrix E €
RN7*Nr | whose columns are the eigenvectors of REM. Then,
each spectral vector b; ; is projected onto the columns of E
giving a vector of transformed spectral coefficients,

Cij = ETbiJ' . (6)

Notice that, in general, c;; € RM with M < N ¢, where
a lower-dimensional vector, ¢;; = EI /b, ;, is obtained by
projecting on a subset of M eigenvectors, Ej;, corresponding
to the M largest eigenvalues of E.

Finally, each one of the 2D transformed bands, ¢c™ (m =
1,..., M) is compressed independently by means of a conven-
tional 2D spatial compression method, such as JPEG2000. We
emphasize again that in this work we focus on the compression
module, while for the encoding part we employ the standard
rate allocation mechanism and entropy coder of JPEG2000.
Furthermore, although demosaicing is a critical component
that affects the overall system performance, however, in the
subsequent experimental evaluation we measure the similarity
between the original and the reconstructed spectral bands, b™
and b™ (n = 1,..., Ny), respectively, whilst leaving the effect
of demosaicing as a separate thorough study. Notice also that,
due to the structure of the original mosaic image, the full-
resolution spectral bands are not available to be used as a
benchmark. Our proposed approach for compressing mosaic
HSI images is summarized in Fig. 3.

IV. EXPERIMENTAL EVALUATION

In this section, the performance of our proposed com-
pression method is evaluated and compared against state-of-
the-art methods designed for full-resolution HSI data cubes.
Our data set consists of two distinct mosaic HSI images,
shown in Fig. 4, which are captured by Ximea’s HSI camera
(ref. Fig. la) equipped with IMEC’s 5 x 5 mosaic sensor.
Our proposed approach (Fix1D-2D) is compared against three

(a) Meat

(b) Outdoor

Fig. 4: SSM HSI images, captured with a Ximea HSI imager
equipped with IMEC’s mosaic filters, used in our experimental
evaluation.

alternative methods, namely, 1) the naive method (JPEG2K-
Full2D), which applies JPEG2000 compression to the original
2D mosaic image; 2) a transform coding method (JPEG2K-
Band2D), which first reshapes the original mosaic image into
25 spectral bands and then compresses the 3D data cube by
applying a hybrid 1D(spectral)-2D(spatial) discrete wavelet
transform (DWT); 3) a hybrid 1D-2D compression method
(PCA-2D) similar to 2), which first decorrelates the spectral
vectors using PCA and then applies JPEG2000 for 2D spatial
compression. In this evaluation, both our method and the
PCA-based one employ all of their 25 eigenvectors, however,
scalable coding is supported by varying the number, M, of
retained eigenvectors. In all cases, the lossless/lossy operation
of the compression module is controlled by JPEG2000, whose
parameters are kept fixed for all the above methods.

The reconstruction quality of the decompressed HSI data,
X, is measured in terms of the average peak signal-to-noise
ratio (PSNR) and average structural similarity index (SSIM),
where the average is taken over the Ny = 25 spectral bands:

2 (rnao((X))2
PSNR (XX) =10-1o _maxtR) ) g
B0l g oy |7
Ny Npy, Noyy
SSIM (XX) _ 1 (241t 10+ 1) (20 o +C2) |
Ny 4 (M%n+,u%”+cl)(abn+gb”+62)
8)

where (1., 0., and o.. denote the mean, standard deviation,
and correlation coefficient of the spectral bands, respectively,
while ¢; and co are parameters for numerical stabilization.
Fig. 5 shows the achieved PSNR and SSIM values, as a
function of the required bits-per-pixel (bpp), for the two mo-
saic images and the four compression methods. As expected,
compressing directly the full mosaic image (JPEG2K-Full2D)
yields the worst performance for both test images, due to
the lack of strong spatio-spectral redundancies in the mosaic
image. On the other hand, our proposed method (Fix1D-2D)
exhibits a better reconstruction quality for a given bpp value.
This is more prominent in the case of the “Meat” image and
for the corresponding SSIM values. For the “Outdoor” image
we observe that both the PSNR and SSIM values for our
proposed method and the other two 1D-2D methods are very
close to each other. However, our Fix1D-2D achieves again
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Fig. 5: PSNR and SSIM as a function of the required bits-per-
pixel for the SSM HSI images a) “Meat” and b) “Outdoor”.

a comparable or even better quality by allocating fewer bpp,
especially when operating in the low bpp regime.

A significant remark is that our method achieves a high
performance, while being computationally very efficient. In-
deed, in contrast to PCA-2D, whose spectral decorrelating
matrix needs to be recalculated for every new input image, the
decorrelating matrix of our method has to be computed only
once for a given SSM sensor, and is then kept fixed for any
input image. Furthermore, when compared against JPEG2K-
Band2D, our proposed approach has a similar computational
cost (N]% ~ Ny for our sensor), whilst it is better capable of
exploiting the limited spectral correlations across the bands,
by accounting for the specific spatio-spectral arrangement
of the filters on the mosaic pattern. Table I gives a rough
estimation of the computational burden of the three hybrid
1D-2D techniques.

TABLE I: Computational cost of the three hybrid 1D-2D
compression techniques (Cjppgox denotes the complexity of
JPEG2000 for compressing a Ny, x Np,, image).

O(NFNy,, Ny )+ Ny - Ciprcox
—_— —

Fix1D-2D
Spectral compression Spatial compression

O(NyNpy, Ny ) + Ny - Ciprgox

JPEG2K-Band2D

Spectral compression

(NJ%NZ,V Noy, + O(N}”)) +O(N3Ny, Ny ) +
—_—

Spatial compression

Spectral compression

PCA-2D PCA
Ny - CipEGok
[

Spatial compression

V. CONCLUSIONS

In this paper, we introduced a method for compressing SSM
HSI images. Motivated by the spatio-spectral properties of
MIMO antenna arrays, a fixed spatio-spectral decorrelating
matrix was constructed, which adapts to the specific mosaic
filter structure of a SSM HSI sensor. Our proposed technique
achieves comparable or even improved reconstruction perfor-
mance, while operating at a lower bpp rate, when compared
against the naive 2D compression approach, as well as against
two state-of-the-art hybrid 1D-2D transform coding methods.

The incorporation of an efficient demosaicing algorithm,
adapted to the specific mosaic pattern, along with a thorough
study of its effect on the overall system performance, will
be carried out in order to complete the pipeline of our HSI
compression system, as shown in Fig. 3. Furthermore, the
compression gain of a mosaic pattern, which can be computed

from the spatio-spectral correlation matrix R%SI?A, will be

studied as a function of the filters arrangement, thus supporting
the optimal arrangement of the filters on the sensor wafer in
order to maximize the compression gain.
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