
A Mathematical Analysis of the Genetic-AIRS

Classification Algorithm

Dimitrios Mathioudakis, Dionysios Sotiropoulos and George A. Tsihrintzis

Department of Informatics, University of Piraeus

Piraeus 185 34, GREECE

Email: mathiou0@gmail.com, dsotirop@gmail.com, geoatsi@unipi.gr

Abstract—This paper presents the inception and the basic
concepts of a hybrid classification algorithm called Genetic-AIRS
[1]. Genetic-AIRS, is a combination of the Artificial Immune
Resource System (AIRS) algorithm witch uses evolutionary
computation techniques. An analysis is presented to determine
the final algorithm architecture and parameters. The paper also
includes an experimental evaluation on various publicly available
datasets of Genetic-AIRS vs AIRS.

Index Terms—Artificial immune system, Genetic algorithm,
Evolutionary computation, Machine learning, Classification

I. INTRODUCTION

Machine learning focuses on the construction of algorithms

that can optimize a performance criterion using samples or

past experience [2]. Given a model which is defined up to

some parameters, learning then consists of execution of a

computer program that can optimize the parameters of this

model and generalize this methods using the training data

or past experience. The model may be either predictive or

descriptive to export knowledge from data or both predictive

and descriptive [3]. As a field, machine learning has seen

tremendous growth over the recent years, both in terms of

theoretical advances and in range of applications [4].

Depending on the type of learning strategy and outcome

produced, machine learning is categorized into two main cat-

egories, which are called supervised and unsupervised learning

[5].

More specifically, in supervised learning, the machine learns

inductively via generalization of a set of training samples. For

each sample, its class of origin is known and the task of the

supervised learning algorithm is to learn to classify samples

other than the ones used during training. Cases, such as for

example digit recognition, in which the task is to assign each

input feature vector to one of a finite number of categories,

are called classification problems. If, on the other hand, the

output consists of one or more continuous variables, then

the corresponding learning tasks are referred to as regression

problems [6].

In unsupervised learning, on the other hand, the class of

origin of the available samples is unknown. The number of

classes of origin itself may be either known or unknown.

The goal in such unsupervised learning problems may be

(i) to find similarities in a data set, which corresponds to a

clustering problem, or (ii) to estimate the distribution of the

data within the input space, which is referred to as a density

estimation problem, or (iii) to visualize the data from a high-

dimensional space down to lower dimensions for the purpose

of visualization [6].

Clearly, the goals of both supervised and unsupervised

learning are difficult to achieve. At the same time, evolution

has equipped biological organisms with the ability to address

similar problems in efficient ways. The sophistication, the

ability to overcome abnormalities in input and the adaptabil-

ity of biological systems represent a strong motivation for

mimicking the mechanisms of natural evolution in an attempt

to build algorithms with characteristics similar to those of

biological systems. Many decades ago, computer scientists

began developing methods inspired by natural evolution to

solve problems that were too difficult to address with use

of analytical methods. Mimicking biological systems in an

artificial sense gives rise to a bundle of machine learning and

computational intelligence paradigms, collectively referred to

as biologically-inspired computing. Artificial immune systems

are such an example of biologically-inspired systems that are

capable of learning, memorizing and recognizing patterns in

signals in a efficient way.

Biological immune systems are the outcome of a lengthy

natural process, called evolution [7]. They are exceedingly

complex and are typically formed by several components that

work in coordination. Their task is to protect the organism that

carries them from external pathogens, such as bacteria and

viruses which have entered the host body and to eliminate

them with minimal cost to the host. Biological immune

systems perform a self/non-self discrimination process that

allows them to identify cells of the organism and distinguish

them from intruders.

On the other hand, genetic algorithms constitute another

biologically-inspired learning methodology motivated by an

analogy to the biological evolution process [2]. They are search

algorithms based on the principles of random mutations,

random crossovers, natural selection and survival of the fittest.

As such, genetic algorithms aim at mimicking the natural

evolution process and provide efficient solutions in search and

learning optimization problems.

More specifically, genetic algorithms are essentially stochas-

tic algorithms. They begin with a randomly initial population

of solutions and compute generations of evolved solutions

based on random mutations and random crossovers of existing

solutions. At each step, the current population is updated by

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 26

replacing some fraction of the population by offsprings of the

fittest. The efficiency of each solution is ranked according to an

objective fitness function and the algorithmic loop is repeated

either a pre-specified number of times defined by the user or

until a termination criterion is met.

Genetic algorithms are conceptually simple as they only

require the ability to compute an objective fitness function

and not its derivatives [8]. They provide a broad paradigm to

solving extensive classes of search and optimization problems

and have proven particularly useful when the objective fitness

function is such that classical optimization methods are not

applicable.

In this paper, we combine the two biologically-inspired

paradigms mentioned previously, namely artificial immune

systems and genetic algorithms. The outcome is a new clas-

sification algorithm, called Genetic-AIRS. The remainder of

the paper is organized as follows: Section 2 presents a brief

review of the basic concepts of Artificial Immune Recognition

System (AIRS) algorithm. In Section 3, we present a math-

ematical analysis of Genetic-AIRS, compare it to the known

AIRS algorithm and identify advantages and disadvantages. In

Section 4, we perform an experimental evaluation of Genetic-

AIRS and, finally, in Section 5, we summarize the paper and

point to future related research.

II. ARTIFICIAL IMMUNE RECOGNITION SYSTEM (AIRS)

A. Immune systems

Artificial immune systems (AIS) constitute a machine learn-

ing/computational intelligence paradigm based on immunol-

ogy and have received a lot of research interest since the

1980’s. Biological immune systems in vertebrates are capable

of efficiently performing complex computations, learning and

memorizing in a parallel and distributed manner. Their task

is to protect the organism that carries them from external

pathogens, such as bacteria and viruses. They achieve this

task via a self/non-self discrimination process that allows them

to identify cells of the organism and distinguish them from

intruders. Biological immune systems consist of an innate

and an adaptive subsystem. The former is reprogrammed to

recognize specific antigens, while the latter is capable of

learning.

Artificial immune systems attempt to mimic the functions of

the adaptive subsystem of biological immune systems. One of

the best known and efficient classification algorithms based on

artificial immune systems is the Artificial Immune Recognition

System (AIRS) [9]. AIRS does not attempt to model the

mechanisms of the immune system, but rather borrows some

of its features, namely clone selection, maturation, and hyper-

mutation [10]. AIRS is characterized by:

1) self-regulation, i.e., the ability to learn and adapt its

architecture depending on the problem,

2) competitive performance, i.e., AIRS performance ranks

within the top five state-of-the-art classifiers,

3) generalization via data reduction, i.e., AIRS outperform

other classifiers while using less data reduction, and

4) parameter stability, i.e., the methods uses to auto-tune

its parameters to achieve different accuracy on different

data.

The AIRS learning algorithm was originally conceived in

an attempt to demonstrate that artificial immune systems are

capable for the task of classification. More specifically, the

goal of the AIRS algorithm is, given a training set of samples

from a data class (antigens), to produce a set of memory

antibodies, which are used to recognize this class. For a

complete presentation of AIRS, the reader is referred to [9].

III. GENETIC AIRS

A. The basic concept

Despite the fact that significant research efforts have been

put on methods and techniques of both genetic algorithms

and artificial immune systems, cross-fertilization from the two

disciplines has been only limited so far. In this paper, we

present a new classification algorithm, called Genetic-AIRS

which combines genetic algorithms with artificial immune sys-

tems [1]. Genetic-AIRS addresses the classification problem

globally in contrast to the AIRS algorithm which addresses

the classification task locally. This is due to the fact that

genetic algorithms perform a global search in the search space.

The new algorithm achieves higher classification accuracy

when compared to AIRS. More specifically, Genetic-AIRS [1]

utilizes detectors, which play the role of memory antibodies,

and locate the samples in the training set. Thus, the set of

detectors forms a representation of the spatial distribution of

the training set.

Each detector x is defined by a sphere Brp = {d(x, p) ≤ r}
where p is a sample in the training set and r is the radius of

the sphere. The radius r specifies how close the detector x can

be to the object p that will be detected. Thus, we can model

the problem of selecting appropriate detectors as a problem of

optimizing the distance of the detector set from the samples

in the training set. In this paper, we address this optimization

problem with a genetic algorithm.

B. Optimization problem definition

Let us describe the classification problem formally. Let

Data be the set we want to classify which consists of N

feature vectors. If C is a class of Data then Ci ⊆ Data with

i ∈ {1, 2 · · ·S} and {C1, C2, · · · , CS} = Data

We can define the training sets Ĉ1, Ĉ2, · · · ĈS which are

subsets of classes C1, C2, · · ·CS , respectively, i.e. Ĉi ⊆ Ci

for i = 1, 2, · · ·S, and

Ĉ1 = {−→x1
1
,−→x2

1
, · · · ,−→xn

1}
Ĉ2 = {−→x1

2
,−→x2

2
, · · · ,−→xn

2}
...

ĈS = {−→x1
S
,−→x2

S
, · · · ,−→xn

S}
where

−→xj
κ ∈ Un = [0, 1]L,

∀κ ∈ {1, 2, · · · , S},

2016 24th European Signal Processing Conference (EUSIPCO)

27

∀j ∈ [1, 2, · · ·n].

The variable −→xj
κ

is the j-th element of the κ-st class with

value in [0,1]. Moreover, to form the detector set, we take a

subset of the training set.

D̂1 = {−→d1
1
,
−→
d2

1
, · · · ,−→dm

1
}

D̂2 = {−→d1
2
,
−→
d2

2
, · · · ,−→dm

2
}

...

D̂S= {−→d1
S

,
−→
d2

S

, · · · ,−→dm
S

}

where
−→
dj

κ

∈ Un = [0, 1]L,

∀κ ∈ {1, 2, · · · , S},

∀j ∈ [1, 2, · · ·m].

With m ≤ n so the detector set has less attributes than the

training set. Every detector
−→
dj

i ∈ D̂i with i = 1, 2, · · · , S
and j = 1, 2, · · · ,m defines a sphere of radius emax which

is further defined by the user. This radius defines the distance

between the detector and the element that needs to be detected

‖−→xi
κ − −→

dj
κ

‖norm − emax. When a detector is emax close

to the element ‖−→xi
κ − −→

dj
κ

‖norm ≤ emax then the detector

is considered to be close enough to the element and thus

is excluded from the detector set. A minimization problem

of the total distance is faced between the detector and the

training set. For this reason we define an objective function

fκ that represent the total distance between the detector and

the training set.

C. Objective function

Minimize

fκ(
−→
d1

κ

,
−→
d2

κ

, · · · ,−→dm
κ

) =

n∑

i=1

ξi
κ

such that

ξi
κ = minj∈[m]{φij

κ}, ∀i ∈ [n]

with

φij
κ = max{0, ‖−→xi

κ −−→
dj

κ

‖norm − emax}

−→
dj

κ

∈ Un = [0, 1]L, ∀j ∈ [m]

and

κ ∈ [1, 2, · · · , S].

Here, κ the κ-th class; thus, for all of the S classes we will

have a total of S optimization problems.

Minimize f1(
−→
d1

1
,
−→
d2

1
, · · · ,−→dm

1
) =

n∑

i=1

ξi
1

Minimize f2(
−→
d1

2
,
−→
d2

2
, · · · ,−→dm

2
) =

n∑

i=1

ξi
2

...

Minimize fS(
−→
d1

S

,
−→
d2

S

, · · · ,−→dm
S

) =

n∑

i=1

ξi
S

such that

ξi
1 = minj∈[m]{φij

1}, ∀i ∈ [n]

ξi
2 = minj∈[m]{φij

2}, ∀i ∈ [n]

...

ξi
S = minj∈[m]{φij

S}, ∀i ∈ [n]

with

φij
1 = max{0, ‖−→xi

1 −−→
dj

1
‖norm − emax}

φij
2 = max{0, ‖−→xi

2 −−→
dj

2
‖norm − emax}

...

φij
S = max{0, ‖−→xi

S −−→
dj

S

‖norm − emax}
−→
dj

κ

∈ Un = [0, 1]L, ∀j ∈ [m]

and

κ ∈ [1, 2, · · · , S].

Since
−→
d ,−→x ∈ Un = [0, 1]L, the normalized Euclidean

distance is given by :

‖−→d −−→x ‖norm =
1√
L
‖−→d −−→x ‖norm

f1, f2, · · · , fs take as an input:

D̂1 = {−→d1
1
,
−→
d2

1
, · · · ,−→dm

1
}

D̂2 = {−→d1
2
,
−→
d2

2
, · · · ,−→dm

2
}

...

D̂S= {−→d1
S

,
−→
d2

S

, · · · ,−→dm
S

}
as random detectors that initialize the optimization problem

and produce the training detectors.

D̂1
∗ = {−→d11

∗

,
−→
d2

1
∗

, · · · ,−→dm1
∗

}
D̂2

∗ = {−→d12
∗

,
−→
d2

2
∗

, · · · ,−→dm2
∗

}
...

D̂S
∗= {−→d1S

∗

,
−→
d2

S
∗

, · · · ,−→dmS
∗

}
As a result the detector set Di

∗ ∈ [1, 2, · · ·S] is the

output of the genetic algorithm. This output has different

2016 24th European Signal Processing Conference (EUSIPCO)

28

distribution and contains better features than the variables

in Ĉ = {Ĉ1, Ĉ2, · · · , ĈS} because of the genetic algorithm

optimization techniques. We use the training detector set

Di
∗ ∈ [1, 2, · · ·S] to classify our dataset. Classification is

computed with a simple majority vote of the nearest neighbors

to each point NN(D∗

i ,
−→xi

κ
). A query point is assigned to the

data class which has the most representatives within the nearest

neighbors of the point. Nearest neighbors algorithm classifies

the input dataset into groups, based on the grouping of the

rows of the training detector set Di
∗ ∈ [1, 2, · · ·S].

This way, Genetic-AIRS is constructed as a hybrid opti-

mization algorithm that uses immune system concepts for data

representation, a genetic approach to find the best solution

to the optimization problem and, at the end, the k-nearest

neighbor algorithm as a classification method.

D. Similarities and differences between AIRS and Genetic-

AIRS

AIRS and Genetic-AIRS are both based on the artificial

immune systems. Thus, they exhibit several resemblances.

• In Genetic-AIRS, we introduce detectors which corre-

spond to antibodies in AIRS. Detectors and antibodies

serve the same purpose, that is, to discover feature vectors

in the search space.

• The Euclidean metric is used in both Genetic-AIRS and

AIRS to compute the distance in the search space.

• Mutation is used in both Genetic-AIRS and AIRS to

genetically vary detectors and antibodies, respectively.

Genetic-AIRS utilizes the mutation method from the

genetic approach.

• Selection of both detectors and antibodies is based on

highest affinity as a realization of the ”Survival of the

fittest” evolution process.

• Both Genetic-AIRS and AIRS data are normalized in

[0,1].

There are, however, several differences between Genetic-

AIRS and AIRS.

• The main difference among them lies in their corre-

sponding data reduction methods. Specifically, AIRS uses

an automated data reduction technique which achieves

higher classification accuracy at the cost of requiring a

higher number of training samples. On the other hand,

Genetic-AIRS uses a standard, user-defined data reduc-

tion technique which allows for requiring fewer training

samples without cost on classification accuracy.

• Another difference between Genetic-AIRS and AIRS lies

in their execution process. The latter is executed locally,

examining one antigen at a time . Genetic-AIRS, on the

other hand, is executed globally and trains all detectors

simultaneously. This results in higher execution time than

required by AIRS.

• Genetic-AIRS and AIRS are differently initialized.

Genetic-AIRS is initialized by random selection of an

initial population of detectors near the mean value of

the training samples, while AIRS is initialized by putting

antigens to the set of memory antibodies.

• Each detector in Genetic-AIRS is characterized by a

radius, which determines how close a sample can be to

the detector in order to be detected.

• Besides a mutation process, a detector in Genetic-AIRS

is genetically varied by a crossover process, as well.

• Genetic-AIRS, being based on a genetic algorithm, ap-

plies a survival-of-the-fittest strategy to select its detec-

tors, while AIRS employs a resource allocation strategy

to select memory antibodies.

IV. EXPERIMENTAL EVALUATION

A. Description of test data

We apply a 10-fold cross validation technique to test the

performance of Genetic-AIRS in various datasets including the

dataset described in [1]. The classes were tested in groups of

different size, including pairwise comparison for two, three,

four, up to ten classes . In order to test and well-tune the

Genetic-AIRS parameters, the algorithm was executed for 350

consecutive iterations using random values for each parameter.

The Genetic-AIRS parameters include the following:

• Detectors set: is the set that detects the variables of our

initial set. This set is a subset of our training set that will

be trained to recognize our initial set. The values of this

parameter in tests was 80% of the training set .

• Population Size: This parameter determines the size of the

population at each generation. Increasing the population

size enables the genetic algorithm to search more points

in search space and obtain better results. On the other

hand the larger the population size, the longer the genetic

algorithm takes to compute each generation. The values

of this parameter in tests was randomly selected from

[20,150].

• Elite Count: The number of individuals with the best

fitness values in the current generation that are guaranteed

to survive to the next generation.

• Crossover Fraction: The fraction of individuals in the

next generation that are created by crossover. The values

of this parameter are a single uniformly random number

between 0 and 1.

• Migration Fraction: Specifies how many individuals move

between sub populations. The values of this parameter are

a single uniformly random number between 0 and 1.

• Migration Interval: Specifies how many generation pass

between migrations. The values are randomly selected

from 1 to Population Size, [1,Population Size].

• k : Specifies the k on the k nearest neighbour algorithm.

The values are between [1,15].

• Emax: Is the variable that defines the distance between

the detector and element that needs to be detected. The

values are randomly selected from [0.1,1].

• Ranges : Specifies the range of the initial population. This

parameter is a range of values between the mean value

of the Dataset and a randomly selected variable. More

formally, Initial Population=(mean− Ranges,mean+
Ranges). The values of this variable are a single uni-

formly random number between 0 and 1.

2016 24th European Signal Processing Conference (EUSIPCO)

29

• The genetic algorithm parameters like Creation Function,

Migration Function, Selection Function, Crossover Func-

tion are set to default value.

B. Evaluation results

In Table I we present the evaluation results. We evaluate

these results testing our MatLab implementation of Genetic

Algorithm compared to WEKA implementation of AIRS2.

Both algorithms were tested with data reduction of 20% so we

could have comparable values. For the first data set, namely

Iris Plant, we observe that Genetic-AIRS slightly outperforms

AIRS2 with 96.4% accuracy vs. 95% accuracy of AIRS2. For

the second data set, namely Prima Indians Diabetes, Genetic-

AIRS outperforms AIRS2 with 74.4% accuracy vs. 70.8%

accuracy of AIRS2. Genetic-AIRS classifies correctly 565 out

of 700 instances and for this reason it is considered to be in the

top ten best classification algorithms for this data set. Genetic-

AIRS performs worse than AIRS2 with the Sonar data set,

achieving 63.52% accuracy vs. 66.01% accuracy of AIRS2.

Finally, with the 10-Class Western Music data set, Genetic-

AIRS outperforms AIRS2 by a margin of 1% to 6% in various

tests.

TABLE I
EVALUATION RESULTS

DataSet Genetic-AIRS Accuracy % AIRS2 Accuracy %

Iris Plant 96.4 95

Prima Indians
Diabetes

74.4 70.872

Sonar 63.52 66.01

C1vsC2 92 87

C1vsC2vsC3 67.7 61.6

C1vsC2vsC3vsC4 62.775 52.5

C1vsC2vs...vsC5 57.48 50.8

C1vsC2vs...vsC6 55.15 45.16

C1vsC2vs...vsC7 53.55 44.85

C1vsC2vs...vsC8 50.03 37.62

C1vsC2vs...vsC9 46.6 37.11

C1vsC2vs...vsC10 41.99 34.5

V. DISCUSSION

From our comparative evaluation, we can draw the follow-

ing conclusions some of which were presented preliminary

form in [1]:

• Genetic-AIRS uses fewer training samples (about 40-

20% of those available), while AIRS uses all of the

available training set.

• Genetic-AIRS is efficient and performs well indepen-

dently of the size of the data set and may exceed the

accuracy of AIRS. On the other hand, execution time

may highly depend on the size of the input data.

• While AIRS uses samples from the training set, Genetic-

AIRS uses the range parameter, which involves the mean

value of the training set, in order to initialize the popu-

lation.

• Because it is based on a genetic algorithm, the execution

time of Genetic-AIRS is higher than that of AIRS.

• Genetic-AIRS, through its global searching mechanism,

can achieve high accuracy with fewer Detectors. This

leads to higher data reduction.

• Overall, Genetic-AIRS is competitive to AIRS and may,

in fact, outperform AIRS.

• Genetic-AIRS forms a different and more integrated

distribution of the data set even when only a small per-

centage of the data set is utilized. The data set is classified

more efficiently with the knn classification algorithm than

the AIRS algorithm which takes into account the entire

data set.

VI. SUMMARY AND FUTURE RESEARCH

In this paper, we presented an analysis of Genetic-Airs,

which is a hybrid classification method based on a fu-

sion of Artificial Immune Systems and Genetic Algorithms.

Specifically, we describe the mathematical definition of the

corresponding optimization problem in order to explain our

classification results. Furthermore, we present and describe the

parameters of the Genetic-AIRS algorithm. Finally, we experi-

mentally compared Genetic-AIRS to AIRS and identified their

relative advantages and disadvantages. In the future, we will

evaluate Genetic-AIRS further using on a variety of data sets.

We will also present a statistical analysis of the parameters

of the algorithm in order to find correlations between the

user-defined parameters and the classification accuracy so as

to fine-tune the parameters of the algorithm. We will extend

Genetic-AIRS by incorporating weights on the classification

features. We will also investigate mapping features into higher-

dimension data or, on the contrary, reducing the data dimen-

sion. This and other research is currently under way and will

be presented elsewhere in the near future.

REFERENCES

[1] D. Sotiropoulos, D. Mathioudakis, and G. A. Tsihrintzis, “Genetic-airs:
A hybrid classification method based on genetic algorithms and artificial
immune systems,” pp. 1–5, July 2014.

[2] T. Mitchell, Machine Learning, jun 1997, vol. 4, no. 1.
[3] E. Alpaydn, Introduction to machine learning, 2014, vol. 1107.
[4] M. Arbib, D. Ballard, J. Bower, and G. Orban, Neural Networks

Algorithms , Applications, 1994, vol. 7, no. 1.
[5] L. Moseley, “Introduction to machine learning,” p. 334, 1988.
[6] C. M. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[7] D. Fogel, “Evolutionary algorithms in theory and practice,” Complexity,
vol. 2, no. 4, pp. 26–27, mar 1997.

[8] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection (Complex Adaptive Systems), 1993.
[9] A. Watkins, J. Timmis, and L. C. Boggess, “Artificial Immune Recogni-

tion System (AIRS) : An Immune Inspired Supervised Machine Learning
Algorithm,” Genetic Programming and Evolvable Machines, vol. 5,
no. 3, pp. 291–317, 2004.

[10] L. N. De Castro and F. J. Von Zuben, “aiNet: An Artificial Immune
Network for Data Analysis,” in Data Mining A Heuristic Approach,
H. A. Abbass, R. A. Sarker, and C. S. Newton, Eds. Idea Group
Publishing, 2001, ch. XII, pp. 231–259.

2016 24th European Signal Processing Conference (EUSIPCO)

30

