
CONJUGATE PRIORS FOR GAUSSIAN EMISSION PLSA RECOMMENDER SYSTEMS
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ABSTRACT
Collaborative filtering for recommender systems seeks to
learn and predict user preferences for a collection of items
by identifying similarities between users on the basis of their
past interest or interaction with the items in question. In
this work, we present a conjugate prior regularized exten-
sion of Hofmann’s Gaussian emission probabilistic latent
semantic analysis model, able to overcome the over-fitting
problem restricting the performance of the earlier formula-
tion. Furthermore, in experiments using the EachMovie and
MovieLens data sets, it is shown that the proposed regularized
model achieves significantly improved prediction accuracy of
user preferences as compared to the latent semantic analysis
model without priors.

Index Terms— Recommender systems, collaborative fil-
tering, probabilistic matrix factorization

1. INTRODUCTION

Recommender systems are of great importance in many forms
of web-based applications and services, and are a widely used
in applications and services such as, e.g., Facebook, YouTube,
Netflix, Spotify, and eBay. In such systems, a user is recom-
mended suitable items based on earlier searches, purchases,
and/or other forms of information about the user. In form-
ing the recommendations in these systems, the recommender
makes a measure of fit, often by simply using a 2-norm or a
mean-squared error (MSE) distortion measure, between the
available user information and items, in order to find the most
suitable matches in the latter (see, e.g., [1–10]). These rec-
ommendations are of great importance to both the user and
the company providing the service; according to [11], 35 per-
cent of what consumers purchase on Amazon, and 75 per-
cent of what they watch on Netflix, result from product rec-
ommendations. Recommenders can be categorized into two
broad groups depending on which kind of data is used as
an input to make the prediction, either content based (CB),
where meta-data related to the items is used such that new
items are recommended that are similar to the previously con-
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sumed items, or collaborative filtering (CF), where the pre-
diction may be based on all users interactions with the items,
by exploiting the similarities in users consumption behavior
to find appropriate recommendations. Earlier works suggest
that when historical data of many users’ past behavior is avail-
able, the CF approach is often superior to the CB filtering ap-
proach [12, p. 111]. For this reason, we here focus on the
CF approach, and, specifically, on the case where the histori-
cal data includes a numerical ranking of the consumption be-
havior. Originally, nearest neighborhood based methods were
often used to create the recommendations in these settings.
Recently, the use of matrix factorization have been shown
to be more successful, offering improved accuracy and at-
tractive scalability [12]. This factorization is performed on
a matrix where unconsumed item-user pairs are represented
with missing values, typically using a low-rank approxima-
tion or dimensionality reduction approach, with the aim of
creating prediction for these missing values. Probabilistic
approaches, such as probabilistic Latent Semantic Analysis
(pLSA) [2] and Latent Dirichlet Allocation (LDA) [13], per-
form this factorization using probabilistic frameworks. Due
to the numerous parameters required in the pLSA framework,
over-fitting is a commonly re-occurring problem, especially
for users with only a few observations available, or, similarly,
for items with only a few observed consumptions. The LDA
approach may in some setups be less prone to overfitting than
the pLSA approach. However, the pLSA method has signifi-
cant merit in its computational simplicity when compared to
the LDA method.

In this paper, we propose an extension of the pLSA model
to alleviate the overfitting problem, using an explicit for-
mulation of conjugate priors for regularization of the model
parameters. The proposed approach forms an extension of
the pLSA approach developed in [2], allowing for Gaus-
sian emission distributions with appropriately chosen priors.
Furthermore, the method avoids the usage of the generally
intractable posterior distribution and the requirement of us-
ing approximate inference or computationally demanding
simulations methods such as Markov Chain Monte Carlo, as
is often used in LDA based methods. Instead, the method
proposed here uses prior distributions allowing for a simple
maximum a-posteriori expression that can be optimized using
the Expectation-Maximization (EM) algorithm and use cross-
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Algorithm 1 EM algorithm for pLSA.
1: initialize p(z|u) and σi,z, µi,z
2: repeat
3: E-step for each z:
4: Q(z|ψ; θ̂) = p̂(v|i,z)P̂ (z|u)∑

z′ p̂(v|i,z′)P̂ (z′|u)
5: M-step for each z:

6: P (z|u) =
∑

<u′,i,v>u′=uQ(z|u,i,v;θ̂)∑
z′

∑
<u′,i,v>u′=uQ(z′|u,i,v;θ̂)

7: µi,z =
∑

<u,i′,v>i′=i vQ(z|u,i,v;θ̂)∑
<u,i′,v>i′=iQ(z|u,i,v;θ̂)

8: σ2
i,z =

∑
<u,i′,v>i′=i(v−µi,z)

2Q(z|u,i,v;θ̂)∑
<u,i′,v>i′=iQ(z|u,i,v;θ̂)

9: until convergence

validation to select the necessary hyper-parameters. The
method has the same complexity as pLSA, although requires
a one-time pre-calculation to select the hyper-parameters. As
shown in the numerical results section, the proposed algo-
rithm shows improved robustness to overfitting and superior
prediction accuracy.

2. DATA MODEL

Let I and U denote the available sets of items and users, re-
spectively. The task of the recommender system is to predict
how the user will rate an unconsumed item, and then use this
information to recommend the user an item. In [2], a pLSA
model was introduced for this purpose, wherein each user, u,
has a probability of belonging to each ofK different states, z,
here denoted P (z|u). The main idea behind introducing such
states is to make a model assumption that each user-item pair
is independent when conditioned on a given z, thereby cap-
turing some fundamental behavior of the data, which may be
captured by the different states z.

In this work, we focus on the so-called forced prediction
case, i.e., when the distribution of each item is modeled con-
ditional on that this item has been rated by the user, although
it should be noted that the free prediction case, where one
conditions only on the user and not on the item, can be han-
dled in a similar manner. With the introduction of the states,
one may form the probability that given an item, i, and a user,
u, the probability of the rating, v, may be expressed as

P (v|u, i) =
∑
z

P (v, z|u, i) =
∑
z

P (v|i, z)P (z|u) (1)

where the sum is formed over all available states, z. Typi-
cally, a user may rate each item according to a pre-defined
set of ratings, here denoted V , such a dislike or like rating,
generally represented as {−1, 1}, or according to some car-
dinal scale, e.g., {1, 2, 3, 4, 5}. Depending on the available
data, being either implicit, such that only the fact that the
item has been consumed by the user is available, or explicit,
for which the user has also provided a numerical rating of the

consumed item, the distribution of the emission from each
state P (v|i, z) may be suitably chosen, e.g., for a continuous
variable, a Gaussian distribution, or for a discrete variable, a
multinomial distribution. However, as the data is commonly
in need of being rescaled and/or mean adjusted [12,14] to ac-
count for varying user rating behavior, as well as to account
for similar item mean differences, the Gaussian distribution
is in many cases more useful, and provides a significant im-
provement in prediction accuracy [2]. Thus, let

P (v|u, i) = P (v|u, i; θ) =
∑
z

P (z|u)f(v;µi,z, σi,z) (2)

where θ denotes a vector containing the unknown parame-
ters, and f(v;µ, σ) the Gaussian distribution with mean µ and
variance σ2, i.e.,

f(v;µ, σ) =
1√

2πσ2
exp

(
− (v − µ)2

2σ2

)
(3)

Given the parameters, the missing data may be estimated us-
ing

E[v|u, i] =

∫
V
v P (v|u, i)dv =

∑
z

P (z|u)

∫
V
v f(v|z, i)dv

=
∑
z

P (z|u)µi,z (4)

Thus, each missing data point can be seen to be estimated
via the inner-product of two K-dimensional vectors, indicat-
ing the connection to the low-rank matrix factorization ap-
proaches. However, it may be noticed that for sparse data
sets, wherein only a small percentage of the ratings are ob-
served, the number of estimated parameters might be larger
than the number of ratings, making the model prone to over-
fitting [2, 13, 15]. This is a serious problem for the recom-
mender, occurring for all users who have consumed fewer
than K items, and will thus affect all new users to the sys-
tem as well as the overall model parameters in general. To
alleviate this problem, we here introduce the use of a regu-
larizing prior to lessen the overfitting problem, reminiscent
to the ideas explored in [16, 17] for the case of a Gaussian
mixture model. By using a maximum a-priori approach and
an appropriate choice of priors, the resulting optimization al-
gorithm may be formed with the same order of complexity
as the algorithm in [2], while avoiding any use of overfitting
heuristics, such as early stopping, and allows the biasing ef-
fect of the prior to be automatically decreased for users and
items which appear more often in the data set. In order to
achieve this, the appropriate choice for the prior to the vari-
able pz|u = P (z|u) is the Dirichlet distribution [16, 17]

pz|u|γ ∼ Dir(γ1 + 1, ..., γK + 1) (5)

where γ is a K-dimensional hyper-parameter, such that

f
(
pz|u

∣∣γ) =
1

B(γ)

K∏
i=1

pγi−1zi|u (6)
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Algorithm 2 EM algorithm for conjugate-prior pLSA
1: initialize p(z|u), σi,z and, µi,z
2: repeat
3: E-step for each z:
4: Q∗(z|ψ; θ̂) = p̂(v|i,z)P̂ (z|u)∑

z′ p̂(v|i,z′)P̂ (z′|u)
5: M-step for each z:

6: P (z|u) =
∑

<u′,i,v>u′=uQ(z|u,i,v;θ̂)+(γu,z−1)∑
z

∑
<u′,i,v>u′=uQ(z|u,i,v;θ̂)+(γu,z−1)

7: µi,z =
∑

<u,i′,v>i′=i vQ(z|u,i,v;θ̂)∑
<u,i′,v>i′=iQ(z|u,i,v;θ̂)

8: σ2
i,z =

∑
<u,i′,v>i′=i(v−µi,z)

2Q(z|u,i,v;θ̂)+2βi,z∑
<u,i′,v>i′=iQ(z|u,i,v;θ̂)+2αi,z+1

9: until convergence

with B(·) denoting the multinomial Beta function, which may
be expressed using the Γ-function [18] as

B(γ) =

∏K
i=1 Γ(γi)

Γ
(∑K

i=1 γi
) (7)

It may be noted that the Dirichlet distribution is a conju-
gate prior distribution for categorical and multinomial dis-
tributions, meaning that for such model, using such a prior
implies that the posterior distribution will also be Dirichlet
distributed. This choice of regularizer also allows for an in-
tuitive interpretation of the hyper-parameter; the choice of γi
will be equivalent with a corresponding assumption on the
number of observations, say ni, of the ith categorical variable

γi = ni + 1 (8)

Similarly, for the Gaussian emission distribution, we choose
priors for µi and σ2

i using the normal-Gamma distribution

N(µ|η, σ√
ν

)Γ−1(σ2|α, β) =

√
ν

σ
√

2π
exp

(
− ν(µ− η)2

2σ2

)
×

× βα

Γ(α)

(
1

σ2

)α+1

exp

(
− β

σ2

)
(9)

where, for notational convenience, we have omitted the
subindex i from all variables, and

α =
ni
2

(10)

β =
ni
2

∑
y∈xi

(y − x̄i)2

ni + 1
(11)

with xi denoting the observed sets of means, µi, or variances,
σ2
i , respectively, and with x̄i being the mean of xi. This

allows for a similar pseudo-observation interpretation of the
hyper-parameters

η =
ni

ni + 1
x̄i (12)

ν = ni + 1 (13)

implying that the prior knowledge on µi and σ2
i may be sum-

marized as

µi|σi, xi ∼ N
(

ni
ni + 1

x̄i,
σ2
i

ni + 1

)
(14)

σ2
i |xi ∼ Γ−1

(
ni
2
,
ni
2

∑
y∈xi

(y − x̄i)2

ni + 1

)
(15)

In [2], Expectation-Maximization (EM) approach was sug-
gested to estimate the parameters of the pLSA model, maxi-
mizing the likelihood

L
(
ψ, θ

)
= −

∑
ψ

log f(v|u, i; θ) (16)

where the summation is over all the observed data triplets,
ψ = (u, i, v). By the EM method, a variational distribution,
Q(·, ψ), is introduced for each observed data triplet, such that∑

z

Q(z|ψ) = 1 (17)

allowing the log-likelihood to be majorized using the Jensen’s
inequality as follows:

L
(
ψ, θ

)
= −

∑
ψ

log
∑
z

Q(z|ψ)
P (z|u)f(v;µi,z, σi,z)

Q(z|ψ)

≤ −
∑
ψ

∑
z

Q(z|ψ) log
P (z|u)f(v;µi,z, σi,z)

Q(z|ψ)

= −
∑
ψ

∑
z

Q(z|ψ) logP (z|u)f(v;µi,z, σi,z)+

+
∑
ψ

∑
z

Q(z|ψ) logQ(z|ψ)

= L̃(θ,Q)−
∑
ψ

H
(
Q(z|ψ)

)
(18)

with L̃(θ,Q) denoting the likelihood of θ expressed inQ, and
H(·) is the entropy function. Thus, the log-likelihood in (18)
has the same form that lends itself to maximization by the
EM algorithm to find a local maximum by iteratively calcu-
lating Q and updating the parameters θ. The resulting steps
are summarized in Algorithm 1.

We now derive a conjugate-prior version of the above
method. We do this by instead seeking to maximize the
posterior distribution, implying that

Lreg
(
ψ, θ

)
= −

∑
ψ

logP (θ|ψ)

≤ L(θ,Q)−
∑
ψ

H
(
Q(z|ψ)

)
= −

∑
ψ

log Dir
(
P (z|u)

∣∣γ)−
−
∑
ψ

∑
z

[
logN(µ;µ0,

σ

ν
) + log Γ−1(σ2;α, β)

]
(19)
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Proposed Hofmann Pop
RMSE 1.2191 1.2690 1.3715

MAE 0.9394 0.9898 1.0914

Table 1. Results from the EachMovie data set.

the RMSE and mean absolute error (MAE), defined as

MAE =
1

N

N∑
i=1

∣∣vi − v̂i∣∣ (25)

as compared to the corresponding results for the pLSA and
Pop methods, clearly indicating the achievable improvement
when including the priors.

Finally, we examine the so-called MovieLens data set
[20]. This data set contains 1,000,209 ratings of about 3900
movies, made by 6040 users. Using a similar cross-validation
as detailed for the EachMovie data set, we find the priors to
be α̂ = 0.5, β̂ = 3, and γ̂ = 1.25 for the MovieLens data
set. Table 3 summarize the RMSE and MAE for the resulting
predictions, again showing the benefit of introducing priors
in the recommender.
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