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Abstract—The electrocardiogram (ECG) is one of the most
important physiological signals to monitor the health status of
a patient. Technological advances allow the size and weight of
ECG acquisition devices to be strongly reduced so that wearable
systems are now available, even though the computational power
and memory capacity is generally limited. An ECG signal is
affected by several artifacts, among which the baseline wandering
(BW), i.e., a slowly varying variation of its trend, represents
a major disturbance. Several algorithms for BW removal have
been proposed in the literature. In this paper, we propose new
methods to face the problem that require low computational and
memory resources and thus well comply with a wearable device
implementation.

I. INTRODUCTION

The development of reliable, low-cost and not intrusive
(or wearable) devices for the measurement of physiological
signals exhibited in the last decades a huge interest in the
field of health-care applications. Such instrumentation enables
the monitoring of patients affected by different pathologies to
be extend directly at their home; furthermore, it can be used by
healthy people to better understand their well-being status in
daily activities. Recent technological advances have supported
the development of powerful, light-weight, low-consumption
devices, using wireless communications to transmit the ac-
quired physiological signals.

Wearable electrocardiogram (ECG) acquisition devices are
one example of such a class of instruments. Unfortunately,
ECG signals (even when acquired by standard medical equip-
ment) are affected by several artifacts [1], for example, due to
electrode contact noise, power line interference, electromyo-
graphic noise, etc., that may hinder a correct diagnosis or
use of the ECG data. One of the major disturbances is
the baseline wandering (BW), caused by patient movement
and respiration, that appears as a random variation of the
signal trend. Thus, a typical ECG diagram can be seen as
the superposition of the informative signal, represented by
the classical P, QRS, T, U waves, and a baseline variation,
characterized by low–frequency components (up to 0.8 Hz).
Removing this disturbance is not simple since its spectrum
partly overlaps with that of the informative signal [2].

Several methods and tools for solving the baseline wan-
dering problem have been proposed in the literature; some of
the most significant ones have been compared in [3]. In [4],
[5], notch filters and time-varying filters were proposed for

extracting the baseline signal, whereas linear spline and cubic
approximations were presented in [6], [7]. Adaptive filters for
BW removal were proposed in [8]. A method based on the
discrete wavelet transform (DWT) was presented in [9]. In
[10], the empirical mode decomposition (EMD) was proposed
for both ECG denoising and BW removal.

In this paper, new methods for solving the baseline wander
problem in ECG signals are presented. This study has been
stimulated by the works in [11], [12], where an algorithm
based on quadratic variation reduction (QVR) was proposed.
A linear time invariant (LTI) implementation approximating
the QVR method has also been presented in [13]. According
to [11], [14], the QVR method achieves better performances,
in comparison to other classical techniques (highpass filtering,
median filtering, adaptive filtering, wavelet adaptive filtering,
see references in [14]), in achieving a fine BW removal and
preserving the shape of the ST segment, which is important
for clinical detection of heart diseases. The methods proposed
in this study are based on approximating the baseline signal
by means of auto-regressive moving-average (ARMA) models,
whose parameters are adaptively estimated in the framework
of QVR optimization. The rationale for introducing ARMA
models for BW removal is that of reducing the computational
burden and the memory requirements of the QVR method
that may hinder its implementation on-board wearable ECG
devices characterized by low-cost and low-performance hard-
ware platforms.

The paper is organized as follows. In Section II, the QVR
method is reviewed. In Section III, ARMA modeling for the
baseline signal is presented and, in Section IV, LMS and RLS
approaches for model parameters estimation are proposed.
Experimental results obtained by using simulated as well as
truly acquired ECG signals are presented in Section V. Some
conclusions are drawn in Section VI.

II. BW REMOVAL WITH QUADRATIC REGULARIZATION

Let x[k], k = 1, 2, . . . , n, be the acquired ECG signal
affected by a baseline q[n], k = 1, 2, . . . , n. It is assumed
that q is a lowpass signal that introduces slow variations (or
trend) into the ECG. The objective of a BW removal algorithm
is that of estimating q from x and remove it, so that x− q has
the same shape of x and a constant trend.
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The quadratic regularization term used in the QVR method
is defined as

Qq =
n−1∑
k=1

(q[k]− q[k + 1])2. (1)

It is apparent that limiting the quantity Qq induces smoothness
in the signal q. Thus, the QVR method for baseline estimation
can be formulated as follows [11]:

q̂ = argmin
q
‖x− q‖2 subject to Qq ≤ ρ, (2)

where x and q are n-length column vector representations of
x and q, respectively, ‖ · ‖ is the l2 norm of a vector, and ρ is
a given constant.

This constrained minimization problem can be reformulated
into an unconstrained one by choosing

q̂ = argmin
q

[
‖x− q‖2 + λQq

]
, (3)

where λ, which can be related to ρ, can be seen as a parameter
that balances the “fidelity” component and the “regularization”
component of the function to be minimized. In order to find
a smooth baseline q, large values of λ must be chosen. The
target function in (3) is quadratic and the solution is linear
and easily achievable in a closed form. Let the (n − 1) × n
matrix D be defined as

D =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

. . .
...

0 · · · 0 1 −1

 . (4)

By using this notation, we have that Qq = ‖Dq‖2 and, thus,
the problem can be reformulated as

q̂ = argmin
q
‖x− q‖2 + λ‖Dq‖2. (5)

The solution of (5) is given by

q̂ =
(
In + λDTD

)−1
x, (6)

where In denotes the n × n identity matrix. As can be seen,
the baseline estimation is linear in the observed ECG signal,
but the storage of long segments of the signal to be filtered is
necessary.

In [13], a LTI approximation of the solution in (6) is
presented. By taking the kth row of the solution, rewritten
as
(
I+ λDTD

)
q̂ = x, for 1 < k < n (i.e., excluding the

first and last sample) we get

−λq̂[k − 1] + (1 + 2λ)q̂[k]− λq̂[k + 1] = x[k]. (7)

Thus, the baseline can be estimated by filtering the observed
ECG signal by means of the transfer function

H(z) =
1

−λz−1 + (1 + 2λ)− λz
, (8)

which is characterized by a couple of poles, one the inverse
of the other, so that the filter can be implemented as a single-
pole IIR filter applied once in the forward and once in the
backward direction, i.e., in a noncausal fashion.

In order to achieve an on-line implementation of the baseline
estimation, new methods are proposed in the next section.

III. ARMA MODELING OF BW

The quadratic regularization problem has been revisited by
assuming that the baseline q can be obtained from the observed
ECG signal x by means of an ARMA model. Assume that

Q(z) =
B(z)

A(z)
X(z), (9)

where

B(z) =
M∑
k=0

bkz
−k,

A(z) = 1 +
N∑

k=1

akz
−k,

(10)

with M and N the orders of the MA and AR components
of the model, respectively, and bk, k = 0, 1, . . . ,M , and ak,
k = 1, . . . , N , their parameters. Thus, the baseline is given by

q[n] =
M∑
k=0

bkx[n− k]−
N∑

k=1

akq[n− k]

= ϕT
1 [n]θ,

(11)

where

ϕ1[n] =
[
x[n] . . . x[n−M ] q[n− 1] . . . q[n−N ]

]T
θ =

[
b0 . . . bM a1 . . . aN

]T
.

(12)

In order to express the difference operation that allows the
regularity term to be defined, let h = [1 − 1]T , so that

q[n]− q[n− 1] = hT

[
q[n]

q[n− 1]

]
= hT

[
ϕT

1 [n]
ϕT

1 [n− 1]

]
θ

= ϕT
2 [n]θ,

(13)

where (11) has been used and

ϕ2[n] =
[
ϕ1[n]ϕ1[n− 1]

]
h. (14)

Consider now the following cost function that we would
like to optimize for estimating θ:

J [n] =
1

n

[ n∑
k=1

(x[n]− q[n])2

+ λ(q[n]− q[n− 1])2
]

(15)
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where the fidelity and regularization terms can be easily
recognized. By using (11) and (13) into (15), we get

J [n] =
1

n

[ n∑
k=1

(x[k]−ϕT
1 [k]θ)

2 + λ(ϕT
2 [k]θ)

2

]
=
1

n

n∑
k=1

x2[k]− 2

(
1

n

n∑
k=1

x[k]ϕT
1 [k]

)
θ

+ θT
(
1

n

n∑
k=1

ϕ1[k]ϕ
T
1 [k]

)
θ

+ λ θT
(
1

n

n∑
k=1

ϕ2[k]ϕ
T
2 [k]

)
θ

=
1

n

n∑
k=1

x2[k]− 2rTnθ + θTR1,nθ + λ θTR2,nθ, (16)

where

R1,n =
1

n

n∑
k=1

ϕ1[k]ϕ
T
1 [k]

R2,n =
1

n

n∑
k=1

ϕ2[k]ϕ
T
2 [k]

rn =
1

n

n∑
k=1

ϕ1[k]x[k]

(17)

The optimal parameter vector that minimizes J [n] is then
given by

θ̂ =
(
R1,n + λR2,n

)−1
rn. (18)

In the proposed metod, the solution is adaptive since (18) can
be used to compute a new parameter vector whenever a new
sample is available. The complexity is dictated by the order
of the matrix to be inverted in (18), which coincides with the
number of the parameters of the ARMA model in (10), and by
the cost for updating the quantities R1,n, R2,n and rn. As to
this latter aspect, with reference, for instance, to the updating
of R1,n, we have

R1,n+1 =
1

n+ 1

n+1∑
k=1

ϕ1[k]ϕ
T
1 [k]

=
1

n+ 1

(
ϕ1[n+ 1]ϕT

1 [n+ 1] +
n∑

k=1

ϕ1[k]ϕ
T
1 [k]

)
=

1

n+ 1
ϕ1[n+ 1]ϕT

1 [n+ 1] +
n

n+ 1
R1,n

(19)

IV. LMS AND RLS SOLUTIONS

In order to reduce the computational cost of the previous
solution, adaptive least mean square (LMS) and recursive least
squares (RLS) solutions can also be devised. To formulate such
approaches in the context of quadratic regularization, define
the following vectors:

y[k] =
[
x[k] 0

]T
(20)

ϕ[k] =
[
ϕ1[k]

√
λϕ2[k]

]
(21)

e[k] = y[k]−ϕT [k]θ. (22)

A. LMS solution

The LMS solution [15] coincides with the following param-
eter vector updating:

θ̂[n] = θ̂[n− 1]− µ

2
∇‖e[n]‖2 (23)

where the time index has been added to θ̂, µ is the updating
gain and ∇‖e[n]‖2 is the gradient of squared norm of the last
error given by

∇‖e[n]‖2 = ∇‖y[n]−ϕT [n]θ̂[n−1]‖2 = −2ϕ[n]e[n], (24)

where θ̂[n − 1] is used for the computation of e[n]. By
substituting (24) into (23) yields

θ̂[n] = θ̂[n− 1] + µϕ[n]e[n] (25)

B. RLS solution

Consider the following RLS cost function

JRLS[n] =

n∑
k=1

αn−k‖e[k]‖2, (26)

where the forgetting factor α has been added to the least
squares cost in (15) and the factor 1/n has been omitted. The
normal equations that allow the estimate θ̂[n] to be achieved
are given by

R[n]θ̂[n] = d[n], (27)

where

R[n] =
n∑

k=1

αn−kϕ[k]ϕT [k]

d[n] =
n∑

k=1

αn−kϕ[k]y[k].

(28)

The RLS approach avoids solving the system in (27) by
updating θ̂[n] from θ̂[n−1] and by computing P[n] = R−1[n]
from P[n − 1] by using an updating formula [16]. In fact, it
can be shown that

θ̂[n] = θ̂[n− 1] +K[n](y −ϕT [n]θ̂[n− 1])

= θ̂[n− 1] +K[n]e[n]
(29)

where

K[n] = α−1P[n− 1]ϕ[n](I2 + α−1ϕT [n]P[n− 1]ϕ[n])−1

(30)
and

P[n] = α−1P[n − 1] − K[n]ϕT [n]α−1P[n − 1] (31)
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V. EXPERIMENTAL RESULTS

In this section, some experimental results obtained by
applying the proposed methods are presented. In the first
set of tests, synthetic baseline-free ECG signals are used. A
known pseudo-random baseline is generated and added to the
synthetic ECG signals, so that BW removal performance of
different algorithms can be quantified. In the second set of
experiments, real ECG signals acquired by using a prototype
of wearable ECG device developed in our laboratory are
processed and the algorithms are visually compared.

A. Experimental tests with synthetic ECG signals and baseline

The algorithm presented in [17] (a Matlab implementation
of which is available in PhysioNet [18]) has been used to
generate synthetic baseline-free ECG signals. The data were
generated by setting the heart rate to 60 bpm, with a sampling
frequency fs = 256 Hz and an additive Gaussian noise with
standard deviation σn = 0.01. The output is an ECG-like
signal normalized between -0.4 and 1.2 mV. Then, a synthetic
pseudo-random baseline was added to the ECG signal. The
baseline was generated by filtering a white Gaussian process
with a fourth-order Butterworth filter with a 3-dB cutoff
frequency set to a given value ft. The amplitude of the output
baseline was adjusted so that its standard deviation σb was
equal to 0.5 mV.

The BW removal algorithms proposed in this paper were
compared with the QVR methods presented in [11] and [13].
All methods have been implemented in Matlab. The estimation
of the ARMA parameters, obtained from inverting the normal
equations (i.e., by using (18)), and from either the LMS or
RLS approaches, are denoted in the following as NE, LMS,
and RLS, in that order. The order of the ARMA model was
M = 0 and N = 3, whereas the value of λ was set to 800.
Such parameters were selected according to the outcome of
experimental tests. In the RLS method, the forgetting factor
α was set to exp(log(0.5)/5000), such that the weight in
(26) is halved after 5000 samples. The method in [11] was
implemented on a block basis, that is the baseline is estimated
on nonoverlapping blocks, having a length of 8192 samples.
For both methods in [11] and [13], denoted in the following
as QVR and QVR-LTI, respectively, the value of λ was set
to 104 (as suggested in the original papers). The methods are
compared in terms of the mean square error (MSE), defined
as

MSE =

∑
n
(q[n]− q̂[n])2

Nq
, (32)

where q is the synthetically generated baseline, q̂ is its estima-
tion obtained from the BW removal algorithms, and Nq is their
length. Adaptive algorithms are evaluated at their convergence,
i.e., the head portion of the baseline was discarded.

In Table I, the values of MSE obtained with different values
of ft and averaged over 50 realizations of the pseudo-random
baseline are reported. The table shows that the proposed meth-
ods seem able to better estimate the BW when the variation of
the baseline becomes more rapid (i.e., for higher ft). Among

Table I
MSE VALUES (AVERAGED OVER 50 REALIZATIONS OF THE BASELINE).

Method ft = 0.2 Hz ft = 0.4 Hz ft = 0.6 Hz
QVR 0.0128 0.0295 0.0539

QVR-LTI 0.0127 0.0296 0.0544
NE 0.0221 0.0261 0.0356

LMS 0.0230 0.0349 0.0477
RLS 0.0183 0.0267 0.0356

the proposed algorithms, the RLS method outperforms the
LMS one for every choice of ft and the NE method for the
lowest ft. In Fig. 1, the BW removal obtained with the QVR-
LTI and the RLS methods (the others are not shown for the
sake of plots’ clarity) are presented for one realization of the
synthetic signals in the case ft = 0.4 Hz.

Figure 1. Sinthetic ECG with synthetic baseline generated with ft = 0.4 (top
plot) and BW removal results obtained with the QVR-LTI method (middle
plot) and the RLS method (bottom plot).

As to the computational burden of the proposed methods,
the cost of the RLS and LMS approaches is O(L2) and O(L),
respectively, where L =M +N +1 is the number of ARMA
parameters to be estimated. Since L is low, the cost (even
for the NE method, where a symmetric matrix needs to be
inverted) is limited.

B. Real ECG data

A prototype of ECG acquisition device, shown in Fig. 2,
has been developed in our laboratory. Its features are the
following: acquisition of 3 ECG bipolar derivations (DI, DII,
DIII) and 1 pre-cordial derivation (V1), by using 5 standard
electrodes; analogic front-end and ADC at 24 bit (Texas
Instruments ADS1293), sampling frequency up to 25.6 ksps;
micro-controller ARM STM32F411; storage onto microSD;
transmission of ECG signals in real time by means of wireless
Bluetooth 4.0 Low Energy (Nordic Semiconductor nRF8001)
or by means of USB connection; accelerometer on-board
(Analog Device ADXL363); PCB dimension of 44x60 mm;
long duration battery with capacity of 1300 mAh; standard
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ECG connectors DIN, diameter 1.5mm. In Fig. 3, an example
of a real ECG signal acquired with the prototype device is
shown as well as the results of the QVR-LTI and RLS BW
removal algorithms (the samples amplitude is not expressed
in voltage, but as integer values). The methods were run in
Matlab after importing the data (a porting of the algorithms
on-board the device is under development).

Figure 2. Prototype of ECG acquisition device.

Figure 3. ECG aquired with the laboratory prototype (top plot) and BW
removal results obtained with the QVR-LTI method (middle plot) and the
RLS method (bottom plot).

VI. CONCLUSION

In this paper, we have presented methods for baseline
wandering removal in ECG signals based on quadratic regu-
larization and ARMA modeling. The validity of the proposed
algorithms has been assessed by using both synthetic and real
ECG signals and by comparisons with known algorithms. The
proposed methods are characterized by limited computational
burden and memory requirements so that its implementation
on wearable ECG devices is feasible.
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