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Abstract—In this work, we propose theoretical and
algorithmic-independent recovery conditions which guarantee
the uniqueness of block sparse recovery in general dictionaries
through a general mixed norm optimization problem. These
conditions are derived using the proposed block uncertainty
principles and block null space property, based on some newly
defined characterizations of block spark, and (p, p)-block mu-
tual incoherence. We show that there is improvement in the
recovery condition when exploiting the block structure of the
representation. In addition, the proposed recovery condition
extends the similar results for block sparse setting by generalizing
the criterion for determining the active blocks, generalizing the
block sparse recovery condition, and relaxing some constraints
on blocks such as linear independency of the columns.

Keywords. Block-sparsity, Block-sparse recovery condi-
tions, Block Mutual Incoherence Constant (BMIC), Block
Spark, Block Uncertainty Principle (BUP).

I. Introduction
In many research fields in science and technology, e.g.,

biomedical imaging [1], genomics [2], statistics [3], data
conversion [4], sensor networks [5], error correcting codes [6],
and superresolution [7], scientists and engineers end up with
vastly underdetermined systems of linear equations (USLE),
which have an infinite number of solutions, if any. Because
of this infinitely many solutions, the problem is said ill-posed.
According to prior knowledge about the nature of the data,
and consequently the solution, this eligible infinite number
of solutions, which results in ambiguity, could be restricted
to a smaller class of solutions or, pragmatically, to a unique
solution. Commonly, a key prior is the assumption of sparsity
of the solution. If there exist a solution that is sparse enough,
one can derive necessary and sufficient conditions for exact
(stable) recovery. These guarantee that the unique solution
(an approximate solution) can be found independent of the
algorithm used. We consider the following linear model:

y = Φβ (1)

where y ∈ Rm is the measurement vector, Φ ∈ Rm×n a
general dictionary and β ∈ Rn the representation vector, and
m < n since we consider the underdetermined case.

The aforementioned sufficient sparsity condition is deter-
mined by a so-called sparsity level, which is the upper bound
for the number of nonzero entries of the representation vector,
and is derived from the dictionary. In other words, when the
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representation vector is very sparse, the sparsity level is low
and vice versa. To define a framework for recovery or iden-
tifiability conditions, some properties and characterizations of
the dictionary are introduced in the literature, among which
the most commonly are: null space property [8], uniform
uncertainty principle [9], Mutual Incoherence (MI) [10], spark
[8], [11] and related properties [12], [9], [13]. Among all
these properties, MI has the great advantage to be simple and
tractable.

As mentioned before, the goal is to extract a representation
vector which is the sparsest among all solutions, i.e., a rep-
resentation with the fewest nonzero elements. For a vector β,
the basic sparsity measure is the `0 pseudo-norm, which is the
number of nonzero entries of the vector β. In general consider
the following `p-norm optimization problem for recovering the
sparse representation:

min
β
‖β‖p s.t. y = Φβ (2)

where ‖β‖p =
(∑

j

∣∣βj

∣∣p ) 1
p . A usual value for p is p = 1,

leading to a `1-norm optimization problem, which can be
viewed as a convexification of `0 pseudo-norm optimization
problem. It turns out that under sufficient conditions the
solutions to both `0 and `1-norm optimization problem are
the same and unique [14], [10]. In finding the unique and
sparse representations, some researchers focused on a more
general case, where 0 < p ≤ 1 [15], [16], [17], [12]. In works
where the `p-norm, p < 1, is used as a measure of sparsity
[9], the corresponding optimization problem is non-convex
and combinatorial. But there is still hope, by approximating
the solution of `p-norm, p < 1, optimization problem, and
relaxing the optimization problem to `1-norm (p = 1 in (2)).
The corresponding optimization problem is convex and can be
recast as a Linear Programming (LP) problem. Therefore, it
can be efficiently solved by search problems based on either
the classical simplex method or recently popular interior point
methods.

In applications such as EEG/MEG source reconstruction,
multi-band signals [18], gene expression levels [2], in addition
to sparsity, structural/geometrical constraints may be available.

For example, in EEG/MEG, we know that each dipole is a
3D moment vector. So, among infinitely many solutions, only
the active blocks of dimension three, would be of interest.
Such sparse representations are referred to as block k-sparse
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representation [19]. In addition to the aforementioned practical
interest, from a mathematical point of view, assuming the
block-wise structure for the representation leads to weakened
recovery conditions. In fact, for the same number of nonzero
elements in the representation, assuming the block structure
guarantees the uniqueness of the representation with a higher
sparsity level [19].

In this paper, a general theoretical and algorithmic-
independent framework for the recovery of a block-sparse
signal representation is proposed. The mentioned generality
is in terms of structure of the dictionary, the norm in the
corresponding optimization problem, the dimension of blocks,
and even the parameters of the proposed block sparsity mea-
sures. The columns of the dictionary can be linearly dependent
and the blocks do not need to be orthonormal bases. There
is no constraint on the relationship between the number of
columns and the number of rows of the dictionary or between
the number of rows of the dictionary and the size of each
of the blocks of the dictionary. The recovery conditions are
proposed for the exact solution of the optimization problem,
therefore the uniqueness of the representation is the center of
our focus. Through the aforementioned generalizations we can
relax some constraints and extend the results of Eldar [19].
We are interested in exact recovery, i.e., the values within
the support. In other words, determining the indices of active
blocks, which is attained after exact recovery, is in the scope
of this study. In addition, we are not constrained to only
Euclidean norm criterion for determining the active blocks.

II. Block Sparsity

As mentioned, the linear system of equations is underde-
termined, m < n in (1). To define the block-sparsity, the
following block-wise structure of the representation vector is
assumed. The blocks are assumed to share the same length d
(≥ 1), without loss of generality. Define the kth block as:

β[k] = [β1[k], · · · ,βd[k]]
T (3)

And the whole representation vector is viewed as a concate-
nation of K individual blocks:

β =
[
βT [1], · · · ,βT [k], · · · ,βT [K]

]T
(4)

where Kd = n. Similarly, the following block-wise structure
is assumed for the dictionary Φ with the kth block defined as
the d columns of matrix Φ:

Φ[k] = [Φ1[k], · · · ,Φd[k]] (5)

with, Φj [k] ∈ Rm. The whole dictionary is viewed as a
concatenation of all of the individual blocks:

Φ = [Φ[1], · · · ,Φ[k], · · · ,Φ[K]] (6)

where Φ[k] ∈ Rm×d. It is assumed that Φj [k],∀j, k has unit
`2 norm.

In the framework of block sparsity, the fewest active blocks
are of interest. Any active block has at least one nonzero
element in β which results in its nonzero `p-norm (0 ≤
p ≤ +∞). To our knowledge, p is always assigned to two,
here we use the `p-norm in a general case of 0 ≤ p. A
representation, β, is called block k-sparse, if it has at most
k active blocks: ‖β‖p,0 ≤ k. The mixed norm `p,0 (see Table
I for its definition) measures the activity of each block in `p-
norm sense and the sparsity of the active blocks in `0 pseudo-
norm sense. From a mathematical point of view, not exploiting
the block structure of the representation is equivalent to
conventional kd-sparse representation ‖β‖0 ≤ kd.

In this work, we first introduce the exact recovery sufficient
condition for the desired block-sparse solution to the following
`p,0 mixed norm optimization problem:

min
β
‖β‖p,0 s.t. y = Φβ (7)

This problem is used in two cases 0 ≤ p and 1 ≤ p. Then,
we generalize the results to the following `p1,p2

mixed norm
optimization problem:

min
β
‖β‖p1,p2

s.t. y = Φβ (8)

where the activity of blocks is measured by `p1 -norm (1 ≤ p1)
and the sparsity of the blocks by `p2

-norm (0 ≤ p2 ≤ 1), see
Table I for `p1,p2

mixed norm definition.
It is obvious that, if the size of the blocks, d, is chosen

to be 1, then the block sparse representation problem reduces
to the conventional sparse representation. To define the block
sparsity conditions, it is necessary to introduce some notations.

TABLE I
‖β‖p1,p2 FOR DIFFERENT VALUES OF p1 AND p2 . I(.) IS THE INDICATOR FUNCTION

p2 = 0 0 < p2 < +∞ p2 = +∞

p1 = 0
K∑

k=1

I

 d∑
j=1

I
(
βj [k]

)  K∑
k=1

∣∣∣∣∣∣
d∑

j=1

I
(
βj [k]

)∣∣∣∣∣∣
p2
 1

p2
max1≤k≤K


d∑

j=1

I
(
βj [k]

)
0 < p1 < +∞

K∑
k=1

I


 d∑

j=1

∣∣∣βj [k]
∣∣∣p1

 1
p1


 K∑

k=1

∣∣∣∣∣∣
d∑

j=1

∣∣∣βj [k]
∣∣∣p1

∣∣∣∣∣∣
p2
p1


1
p2

max1≤k≤K


 d∑

j=1

∣∣∣βj [k]
∣∣∣p1

 1
p1


p1 = +∞

K∑
k=1

I

(
max

1≤j≤d

{∣∣∣βj [k]
∣∣∣})

 K∑
k=1

∣∣∣∣∣ max
1≤j≤d

{∣∣∣βj [k]
∣∣∣}∣∣∣∣∣

p2
 1

p2
max1≤k≤K

{
max1≤j≤d

{∣∣∣βj [k]
∣∣∣}}
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Definition 1. The Block Support and Block Cardinality of
a representation vector, β ∈ Rn, are defined as:

∀p ≥ 0, block-supp(β) = T ′ =
{
k : ‖β[k]‖p 6= 0, 1 ≤ k ≤ K

}
∀p ≥ 0, block-card(T ′) = |T ′| = ‖β‖p,0

Definition 2. The Block Kernel of a dictionary, Φ ∈ Rm×n,
is its usual kernel:

block-ker(Φ) =

{
x ∈ Rn,

K∑
k=1

Φ[k]x[k] = Φx = 0

}
= ker(Φ)

Definition 3. The Block Spark of a dictionary ∀p ≥ 0 is:

block-spark(Φ) = min
x∈block-ker(Φ)

x6=0

‖x‖p,0 (9)

If d = 1, as expected, block spark is equal to spark.

Definition 4. The (p, p)-Block Mutual Incoherence Con-
stant (BMICp,p) of a dictionary, is defined ∀p ≥ 1 as:

Mp,p(Φ) = max
k,k′ 6=k
x6=0

1

d

∥∥∥Φ†[k]Φ[k′]x[k′]
∥∥∥
p

‖x[k′]‖p

= max
k,k′ 6=k

1

d

∥∥∥Φ†[k]Φ[k′]
∥∥∥
p→p

(10)

where Φ†[k] is Moore-Penrose pseudo-inverse of Φ[k], and
‖Φ‖p→p = maxx6=0 ‖Φx‖p / ‖x‖p is the operator norm. If
d = 1, as expected, Mp,p is equal to conventional MI, which
is the maximum pairwise correlation between the atoms of the
dictionary.

A. Block Uncertainty Principle and Exact Block-Sparse
Recovery Condition using Block Spark

In general, the columns of the dictionary do not need to
be linearly independent. Therefore, spark was defined [11]
according to the smallest number of the columns which
are linearly dependent. In the literature, to approach the
problem of determining the sufficient conditions for unique
sparse recovery, a different problem inspired by the con-
cept of uncertainty principle is considered [20], [10], [21].
Consider the problem (2) for p = 1, and suppose β0 and
β1 are two distinct representations of the nonzero signal y,
in the dictionary Φ. The uncertainty principle of redundant
solutions states that a nonzero signal can not have multiple
sparse representations. In other words, there is a limit on
the sparsity level of the representations β0 and β1, namely
‖β0‖0 + ‖β1‖0 ≥ spark(Φ). The mentioned uncertainty
principle has been stated and demonstrated for different cases
of the dictionary. At first, the dictionary was considered as
a concatenation of two orthonormal bases [10], [21]. Then,
this uncertainty principle was generalized to dictionaries which
arise from the union of more than two orthonormal bases [8].
Finally, it was generalized to dictionaries which can be the
concatenation of less structured blocks, or frames [11].

Using the aforementioned uncertainty principle, in different
cases of dictionary, and the simple criterion of spark(Φ),

the uniqueness of the sparse solution can be demonstrated
if ‖β0‖0 < spark(Φ)/2. For introducing the block sparse
recovery conditions, generalizing ideas of [10], [21], we
propose the following Lemma based on Block Spark (BS),
called Block Uncertainty Principle (BUP-BS):

Lemma 1. (BUP-BS) For any general dictionary, Φ, and for
any arbitrary nonzero signal, y, with two distinct representa-
tions, β0 and β1, i.e. y = Φβ0 = Φβ1, we have:

‖β0‖p,0 + ‖β1‖p,0 ≥ block-spark(Φ), ∀p ≥ 0 (11)

Proof. Here, we used one of the properties of the `0 pseudo-
norm operator for vector space and generalized it to the block
structure and derived the corresponding triangle inequality,
‖β0‖p,0 + ‖β1‖p,0 ≥ ‖β0 − β1‖p,0. Since (β0 − β1) ∈
block-ker(Φ), we have ‖β0 − β1‖p,0 ≥ block-spark(Φ).

Theorem 1. For any general dictionary, and ∀p ≥ 0 if

‖β0‖p,0 <
block-spark(Φ)

2
(12)

then β0 is the unique solution to the optimization problem (7).

Proof. Suppose y = Φβ0 = Φβ1. Since it is assumed that the
number of active blocks of the candidate solution is less than
block-spark(Φ)/2, from Lemma 1 it is concluded that any al-
ternative solution necessarily has more than block-spark(Φ)/2
active blocks.

As mentioned before, from a mathematical point of view,
exploiting the block structure information of the represen-
tation leads to improved recovery conditions, i.e. condi-
tions with higher sparsity level. For investigating this phe-
nomenon, consider a block sparse representation, β0, which
satisfies ‖β0‖p,0 < block-spark(Φ)/2. On the other hand,
we have, ‖β0‖0 ≤ d × ‖β0‖p,0, therefore ‖β0‖0 ≤
d × block-spark(Φ)/2. If we furthermore show that d ×
block-spark(Φ) ≥ spark(Φ), the benefit of using block
structure information will be proved.

Corollary 1. Let Φ being a general dictionary and d being
the size of each of the blocks, we have:

∀d ≥ 1, d× block-spark(Φ) ≥ spark(Φ) (13)

Proof. Take x? def
= argminx∈ker(Φ)

x6=0

‖x‖0 and x?
b

def
=

argminx∈block-ker(Φ)
x6=0

‖x‖p,0 p ≥ 0. By definition, ‖x?‖0 ≤

‖x?
b‖0, with equality occurring when all of the elements in

each of the blocks are nonzero.
It is clear that in a block structured vector, the number of

nonzero elements is less than or equal to d times the number of
active blocks, with equality occurring when all of the elements
in each of the blocks are nonzero:

‖x?
b‖0 ≤ d× ‖x?

b‖p,0 (14)

Hence, we have, ‖x?‖0 ≤ d × ‖x?
b‖p,0. But, spark(Φ) =

‖x?‖0, and block-spark(Φ) = ‖x?
b‖p,0.
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Therefore, Theorem 1 improves the conventional spark-
based recovery conditions of Donoho [11], and Gribonval [8]
by weakening the condition.

B. Exact Block-Sparse Recovery Condition using Block
Null Space Property

The following Theorem in a special case of d = 1, `1-norm
of kernel and for dictionaries being a concatenation of two
orthonormal bases, was used in [10] and [21]. Then, in [8], the
results of [10] and [21] were generalized to `p-norm of kernel
(0 ≤ p ≤ 1) and union of orthonormal bases. By refining
and generalizing the ideas from Donoho [10], Elad [21] and
Gribonval [8], we propose the following Theorem, called Block
Null Space Property (BNSP), which includes more general
case of d ≥ 1, `p1,p2

mixed norm (p1 ≥ 1, 0 ≤ p2 ≤ 1) of
block kernel and a general dictionary.

Theorem 2. (BNSP) Let Φ being a general dictionary and
T ′ ⊂ {1, · · · ,K} a set of block indices. For p1 ≥ 1, 0 ≤
p2 ≤ 1 and T ′0 = block-supp(β0) define:

Pp1,p2
(T ′,Φ) = max

x∈block-ker(Φ)
x6=0

∑
k∈T ′

∣∣∣∣∣∣
d∑

j=1

|xj [k]|p1

∣∣∣∣∣∣
p2
p1

K∑
k=1

∣∣∣∣∣∣
d∑

j=1

|xj [k]|p1

∣∣∣∣∣∣
p2
p1

(15)

with the convention of x0 =

{
1 x 6= 0

0 x = 0
.

If Pp1,p2
(T ′,Φ) < 1

2 , then for all β0 such that T ′0 ⊂ T ′,
β0 is the unique solution to the minimization problem (8).

Proof (sketch). Under the assumption of Pp1,p2(T
′,Φ) < 1

2
and T ′0 ⊂ T ′, to show that β0 is the unique solution to the
minimization problem (8), we need to prove that:

∀x ∈ block-ker(Φ), ‖β0‖p2

p1,p2
< ‖β0 + x‖p2

p1,p2
(16)

We may prove the quasi-triangle inequality ‖a+ b‖p2

p1
−

‖a‖p2

p1
≥ −‖b‖p2

p1
for 1 ≤ p1 and 0 ≤ p2 ≤ 1. Therefore,

for proving the necessary condition (16), after dividing the
whole blocks to on-block-support (∈ T ′), and off-block-
support (/∈ T ′) and using the derived quasi-triangle inequality,
it is sufficient to prove:

0 <
∑
k/∈T ′

∣∣∣∣∣∣
d∑

j=1

|xj [k]|p1

∣∣∣∣∣∣
p2
p1

−
∑
k∈T ′

∣∣∣∣∣∣
d∑

j=1

|xj [k]|p1

∣∣∣∣∣∣
p2
p1

But the above inequality is exactly the initial assumption of
the proof, Pp1,p2(T

′,Φ) < 1
2 .

This Theorem determines sufficient conditions on T ′ by
determining a 50% upper threshold on the concentration of
the `p1

-norm of blocks of block kernel x in block support
T ′, such that guarantee the uniqueness of the solution to the
minimization problem (8).

C. Block Uncertainty Principle and Exact Block-Sparse
Recovery Condition using Block Mutual Incoherence Con-
stant

In general, spark(Φ) and block-spark(Φ) are computation-
ally intractable, in other words, it is impossible in polynomial
time to check the identifiability of the model through the
recovery conditions. Here, we use the block-wise extension
of the conventional element-wise MI, which is called Block
MIC (BMICp,p), Mp,p(Φ) (10). Now, thanks to this proposed
characterization of the dictionary, we can overcome to in-
tractability of the block-spark(Φ), of course, with the expense
of making the recovery conditions more restrictive. First, by
proposing the following Lemma, we investigate the relation
between block-spark(Φ) and Mp,p(Φ).

Lemma 2. For any general dictionary,

block-spark(Φ) ≥ 1 + (d×Mp,p(Φ))
−1

, ∀p ≥ 1 (17)

Proof (sketch). Because x ∈ block-ker(Φ), we have for all
k, x[k] = −

∑
k′ 6=k Φ

†[k]Φ[k′]x[k′]. Taking ‖.‖p from both
sides and using the triangular inequality for p ≥ 1, we have
‖x[k]‖p ≤

∑
k′ 6=k

∥∥∥Φ†[k]Φ[k′]x[k′]
∥∥∥
p
. It follows from (10),

that ‖x[k]‖p ≤ d × Mp,p(Φ)
∑

k′ 6=k ‖x[k′]‖p. Adding d ×
Mp,p(Φ) ‖x[k]‖p to both sides and summing over nonzero
blocks of x, we obtain:

d×Mp,p(Φ) ‖x‖p,0 ‖x‖p,1 ≥ (1 + d×Mp,p(Φ)) ‖x‖p,1

Then,

‖x‖p,0 ≥ 1 + (d×Mp,p(Φ))
−1

which proves the Lemma.

Lemma 3. (BUP-BMICp,p) For any general dictionary Φ,
with BMICp,p, Mp,p(Φ), and for any arbitrary nonzero signal
y, with two distinct representations β0 and β1, the following
inequality holds true ∀p ≥ 1:

‖β0‖p,0 + ‖β1‖p,0 ≥ 1 + (d×Mp,p(Φ))
−1 (18)

Proof. This follows from Lemma 1 and Lemma 2.

Theorem 3. For any general dictionary, ∀p ≥ 1 if

‖β0‖p,0 <
1 + (d×Mp,p(Φ))

−1

2
(19)

then β0 is the unique solution to the optimization problem (7).

Proof. Similar to proof of Theorem 1.

Corollary 2. If the columns in each of the blocks are orthog-
onal to each other, i.e., ΦH [k]Φ[k] = Id for 1 ≤ k ≤ K, then
∀p ≥ 1:

Mp,p(Φ) = max
k,k′ 6=k

1

d

∥∥∥ΦH [k]Φ[k′]
∥∥∥
p→p

(20)
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Proof. Using the pseudo-inverse property of A† =
(AHA)−1AH , we have:

Mp,p(Φ) = max
k,k′ 6=k

1

d

∥∥∥Φ†[k]Φ[k′]
∥∥∥
p→p

= max
k,k′ 6=k

1

d

∥∥∥(ΦH [k]Φ[k])−1ΦH [k]Φ[k′]
∥∥∥
p→p

= max
k,k′ 6=k

1

d

∥∥∥ΦH [k]Φ[k′]
∥∥∥
p→p

The last relation follows from ΦH [k]Φ[k] = Id.

If in (20), we choose p = 2, the right hand side of the in-
equality would be the block-coherence proposed by Eldar [19],
MEldar(Φ). The block sparse recovery condition for ensuring
the uniqueness of the solution of their proposed mixed `2/`1-
optimization program (L-OPT) [22], Block Matching Pursuit
(BMP), and Block Orthogonal Matching Pursuit (BOMP) [19],
in the special case of Corollary 2, where there exists intra-
block orthogonality, is ‖β0‖2,0 < (1 + (dMEldar(Φ))

−1
)/2

which is very similar to Theorem 3. On the other hand,
from Corollary 2 in a special setting of p = 2 we have
M2,2(Φ) = MEldar(Φ). Therefore Theorem 3 in a special
setting of p = 2 is equal to Eldar’s recovery condition. In
other words, theoretically and independent of the recovery
algorithm, unique recovery of representations are guaranteed.

III. Conclusion

In this work, the sufficient conditions for unique recovery of
block sparse recovery of an arbitrary signal y, in a general ar-
bitrary dictionary Φ, using a general mixed norm optimization
problem (7) and (8), are proposed. In this study, the dictionary
is general and not restricted to be a union of two or more
orthonormal bases. The corresponding optimization problem is
a general `p1,p2

(1 ≤ p1 and 0 ≤ p2 ≤ 1) of which `p,0 (1 ≤ p)
is a special case. In addition, the proposed characterizations of
Pp1,p2(T

′,Φ), Mp,p(Φ), and block-spark(Φ) are introduced in
their general case where Pp1,p2(T

′,Φ) is defined for 1 ≤ p1
and 0 ≤ p2 ≤ 1, Mp,p(Φ) for 1 ≤ p and block-spark(Φ) for
0 ≤ p. The properties of Block Null Space Property (BNSP),
and two Block Uncertainty Principles (BUP-BS and BUP-
BMICp,p) are defined in their general case and introduced to
deduce recovery conditions for block-sparse representations.
We demonstrated that the proposed block-sparse recovery
conditions generalizes previous results by Donoho [10], [11],
Elad [21], Gribonval [8], and Eldar [19].

We will pursue the study of our proposed recovery condition
since preliminary results have shown improvement with re-
spect to Eldar’s under non-orthogonal setting. Future research
will also focus on: (1) stable or robust recovery conditions,
i.e., when ‖y −Φβ‖2 < e, and (2) considering the case of
multiple dictionaries sharing the same representation β.
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