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ABSTRACT

Fault detection and diagnosis methods have to deal with large vari-

able data sets encountered in complex industrial systems. Solutions

to this problem require multivariate statistics approaches often fo-

cused on the reduction of the space dimension. In this paper we

propose a fault detection and estimation approach using Multivari-

ate Kullback-Leibler Divergence (MKLD) to cope with the negative

effects due dimension reduction while using Principal Component

Analysis (PCA). The obtained results show its superiority on the

usual PCA-KLD based approach. An analytical model of the MKLD

is proposed and validated for low severity fault (incipient fault) de-

tection and estimation in noisy environment operating conditions.

Index Terms— Incipient fault diagnosis, Detection, Estimation,

Kullback-Leibler Divergence, Multivariate analysis

1. INTRODUCTION

The last three decades have shown an increased demand for improv-

ing the economy and safety of processes. Health monitoring of pro-

cesses has been widely developed with studies on fault detection and

diagnosis. In a wide variety of industrial and onboard applications,

the detection and diagnosis of faults are considered essential to en-

sure high performance level of the plant operation to reduce eco-

nomic losses and enhance the system security [1]. Due to increasing

safety rules, and in order to avoid systems unwanted stops it is cru-

cial to be able to detect at their early stage failures that will be able to

occur disease in a complex system. Such incipient faults are difficult

to detect due to their low severities and their high sensitivity to noisy

environments.

It has been recognized that statistical-based techniques have many

attractive advantages in dealing with large variable sets encountered

in complex industrial systems. Among various statistical-based tech-

niques, multivariate projection-based methods are the most popular

ones [2]. Principal Component Analysis (PCA) is one of the most of-

ten used for multivariate data-driven-based industrial systems health

monitoring [3, 4, 5]. Its main interest is the ability to reduce the data

dimensional-space while keeping the maximum variance informa-

tion available [6].

For fault detection purpose, statistical-based criteria in PCA frame-

work have been successfully used. For example T 2, Q statistics,

and f − divergences techniques have shown their efficiency [7, 8,
9, 10]. Comparing those techniques, J. Harmouche et al [10, 11],

have shown that the monitoring strategy with Kullback-Leibler Di-

vergences (KLD) using PCA is conceptually more straightforward

and also more sensitive for the detection of faults with very low

severities namely incipient faults.

In [12], a PCA-KLD univariate-based approach focused on the max-

imum variance components has been used to detect incipient faults.

It has been highlighted that the fault detection threshold, and the per-

formances defined by the Missed Detection Probabilities (PMD) and

False Alarm Probabilities (PFA) are strongly related to the Fault to

Noise Ratio (FNR). Moreover, the incipient fault detections perfor-

mances can be degraded by the projection error and the uncorrelated

variables that can be yield using PCA [13]. To cope with this prob-

lem, B. Wang et al [14] propose to base their statistical analysis on a

multi-block principal component analysis. In their approach the cor-

related signals with close similarities are first grouped in the same-

block for the PCA. Detection analysis is done between the Multi-

block PCA results. This solution is efficient but in the case of in-

cipient fault with nuisance parameters (noise), this is not sufficient :

the smaller the fault is, more difficult is the accurate fault detection

and severity estimation. The performances are then limited due to

loss brought by the PCA. Therefore, we propose here a multivariate

KLD (MKLD) approach to evaluate the dissimilarities among mea-

sured data distribution without any PCA transformation so as to use

the whole data information available for the analysis. Within this

multivariate analysis, we propose then to estimate more accurately

the fault severity in the noisy environment and reach better perfor-

mances.

2. PAPER CONTRIBUTION

In this paper, considering a multivariate process history based

method, we propose first to improve (reduce) the fault detectabil-

ity of incipient fault using multivariate KLD in the original data

framework. We will show how the PMD and PFA performances are

improved and how the detection threshold (via the Fault to Noise

Ratio) is minimized. Then we propose to estimate accurately the

incipient fault severity with an analytical model of the multivariate

KLD in a fault diagnosis context. The robustness of the estimated

severity information for different noise levels are assessed.

3. INCIPIENT FAULT DETECTION

3.1. Kullback-Leibler Divergence

In multivariate statistical process monitoring, an important task is

to monitor the divergence between healthy data and measured ones

to first detect and then diagnose a fault occurrence. A natural idea
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consists of measuring the divergence between the probability den-

sity functions (Pdf) of healthy data and measured ones. This can

be achieved by observing the Kullback-Leibler Divergence between

the two probability distributions.

For discrimination purpose between two continuous Pdf f(x)
and g(x) of a random variable x, the Kullback-Leibler Information

(KLI) [15] is defined by I(f‖g) such as I(f‖g) =
∫
f(x) log f(x)

g(x)
dx.

The KLD is then defined as the symmetric version of the KL Infor-

mation [16] denoted by KLD(f, g) = I(f‖g) + I(g‖f).

For normal densities f and g such that f ∼ N (µ0, σ
2
0) and

g ∼ N (µ1, σ
2
1), where µ0, µ1 are the means and σ2

0 , σ
2
1 are the

variances values for f and g respectively, the symmetrical univariate
KLD between f and g is:

KLD(f, g) =
1

2
[
σ2
1

σ2
0

+
σ2
0

σ2
1

+ (µ0 − µ1)
2(

1

σ2
0

+
1

σ2
1

)− 2] (1)

The non-symmetrical Multivariate Kullback-Leibler Divergence

(MKLD) [17] for Gaussian signal densities f ∼ N (µ0,Σ0) and
g ∼ N (µ1,Σ1), with non-singular covariances matrices denoted

Σ0 andΣ1, is:

MKLD(f, g) =
1

2
(tr

(
Σ

−1
1 Σ0

)
+(µ1 − µ0)

T
Σ

−1
1 (µ1−µ0)

−m+ ln
|Σ1|
|Σ0|

) (2)

where m is the dimension of the vector space, µ0 and µ1 are the

vectors of the mean values.

3.2. Fault detection procedure

The general statistical monitoring procedure is based on the collec-

tion of a large number of healthy data samples used as the reference

data set. All new measured data are then compared to the healthy

ones to check whether an abnormal event (faulty situation) occurs.

While the healthy data are not available, the problem can be consid-

ered as evaluating the difference between two consecutive moving

temporal frames.

3.2.1. Univariate approach using KLD with PCA (PCA-KLD)

In the univariate approach, the healthy data are projected in the PCA

framework, and a reference model of the PCA is obtained (eigenvec-

tors). Then, a reference healthy probability distribution is estimated

for each latent score. Afterwards, for each new set of observations,

the associated latent scores are calculated through the predetermined

PCA model and their probability distribution are estimated. Thus,

the KLD is used to measure the dissimilarities between the probabil-

ity density functions of healthy latent scores and measured ones. The

obtained KLD value is compared finally to a threshold to make the

decision (healthy or faulty). The choice of the threshold depends on

the desired performances and the noise level in the system [12, 18].

3.2.2. Multivariate approach using MKLD for detection

For the multivariate approach, PCA is not used [19]. A reference

multivariate probability distribution is estimated for the healthy data

set. Then for each new measured set of observations, their multi-

variate probability distribution are computed, and compared to the

reference ones by the MKLD. The MKLD value is then compared to

a threshold to decide if the measured data set is healthy or faulty.

3.2.3. Comparison of performances

To compare the detection performances of the PCA-KLD with the

MKLD, we consider as an example a multivariate Auto-Regressive

(AR) system :

s(i) =




0.11 −0.19 0.2
0.84 0.26 0.1
0.47 −0.14 0.8


 s(i−1)+




1 2 7
3 −4 4
6 −7 5


u(i−1)

y(i) = s(i) + v(i)

where u is the correlated input,

u(i) =




0.8 0.2 0.1
0.4 0.5 0.7
0.9 0.4 0.3



u(i−1)+




0.1 0.6 0.4
0.3 0.7 0.2
0.1 0.5 0.7



w(i−1)

w is a vector of 3 inputs w = [w1 w2 w3]
T , which are in-

dependent Gaussian signals with zero mean and unit variance.

u = [u1 u2 u3]
T is the vector of measured inputs, and y =

[y1 y2 y3]
T is the vector of outputs corrupted by uncorrelated

data Gaussian errors v = [v1 v2 v3]
T with zero mean and

variance σ2
v . The vector of process variables will be formed with

the measured inputs and outputs of the process at instant i, i.e
[y1 y2 y3 u1 u2 u3]

T . A data matrix X̃ of N measure-

ments/row is formed with these variables. We apply a gain fault

(variance change) on the variable u1.

To compare the detection limit of the two methods, we plot in

Fig.1 and Fig.2 the ROC curves (detection probability, PD along

with false alarm probability, PFA) considering a Signal to Noise

Ratio (SNR) equal to 40dB, and for different Fault to Noise Ratio

(FNR). For the PCA-KLD method, the first principal components

representing the maximum data information are considered.
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Fig. 1. PCA-KLD performance, SNR = 40dB

As seen in Fig.1, the PCA-KLD approach is efficient (no false

alarm and 100 % detection) for FNR= +3dB and higher values. For

lower FNR, performances are degraded. However, for the MKLD,

Fig.2 shows that the ideal detection performance is attained from
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Fig. 2. MKLD performance, SNR = 40dB

FNR=-17dB (fault severity lower than the ideal PCA-KLD case

(FNR=+3dB)).

In order to show the noise effect on both methods, we con-

sider a gain fault of severity a = 0.002 for several noise conditions
(SNR = [20dB, 25dB, 30dB, 40dB]). The results are given in Fig.3.

As seen in figure 3, the fault can be easily detected by the MKLD
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Fig. 3. MKLD vs PCA-KLD detection performance comparison

for SNR=40dB and SNR=30dB. For SNR=20dB and SNR=25dB the

performances of the MKLD is affected and the detection are lowed

but still good. However, for the PCA-KLD approach the detection

performances are more severely affected by the noise for the con-

sidered SNR. The more the noise variance is high, lower are the

detection performances.

Therefore, the MKLD widely improves the detection performance

compared to the univariate approach and this detection is also suffi-

ciently robust to noise influence.

4. FAULT ESTIMATION

Once a fault occurrence is detected, its severity (amplitude) should

be estimated for diagnosis purpose. As shown in the previous sec-

tion, the MKLD values obtained for two different fault amplitudes,

in the same noise conditions, are not the same, therefore the MKLD

can be used for fault estimation. In order to estimate the fault am-

plitude (severity), a model of the MKLD function of the fault am-

plitude and the noise level has to be determined. Consequently, in

this section, we theoretically compute the MKLD model in terms of

the fault amplitude denoted a and the original data set parameters

(MKLD = f(a, θX̃ , θX)) where θX̃ and θX are the probability

distribution parameters of the healthy and the faulty data set respec-

tively. Thus, the fault amplitude is estimated using the inverse model

(â = f−1(MKLD, θX̃ , θX)).

4.1. MKLD modeling for incipient fault

Considering that the healthy data set X̃ follows a Gaussian distri-

bution f(X̃) ∼ N (µ0,Σ0), and the faulty data set X follows a

Gaussian distribution g(X) ∼ N (µ1,Σ1).
Σ0 is the covariance matrix of the healthy data:

Σ0 =




c11 c12 ... c1m
c21 c22 ... c2m
: : : :

cm1 ... ... cmm


 (3)

µ0 is the mean vector of the original data:

µ0 = (µ01 µ02 .. µ0m)T (4)

We assume that one variable xj is affected by a gain fault such as:

xj = G× x̃j (5)

where x̃j is the reference variable and G = 1 + a.
The covariance matrixΣ1 of the faulty data set is:

Σ1 =




c11 c12 ... Gc1j ... c1m
c21 c22 ... Gc2j ... c2m
: : : : : :

Gcj1 Gcj2 ... G2cjj ... Gcjm
: : : : : :

cm1 ... ... Gcmj ... cmm




(6)

Let us define the matrix A[m×m] as:

A =




1 0 ... 0↓
j

... 0
0 1 ... 0 ... 0
: : : : : :
0 0 ... G ... 0
: : : : : :
0 0 ... 0 ... 1




(7)

We can write:

Σ1 = A×Σ0 × A (8)

and

Σ
−1
1 = A

−1 ×Σ
−1
0 × A

−1
(9)

Σ
−1
0 is the inverse of the reference covariance matrix :

Σ
−1
0 =




δ11 δ12 ... δ1m
δ21 δ22 ... δ2m
: : : :

δm1 ... ... δmm


 (10)

Σ
−1
1 ×Σ0 = A

−1 ×Σ
−1
0 × A

−1 ×Σ0 (11)

Then

tr(Σ−1
1 ×Σ0) = tr(A−1 ×Σ

−1
0 ×A

−1 ×Σ0) (12)
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As the trace function is the sum of the diagonal elements in a matrix,

we should then multiply the 2matrices (A−1×Σ
−1
0 ) and (A−1×Σ0)

to obtain the diagonal elements. We finally, obtain:

tr(Σ−1
1 ×Σ0) = 2

m−1∑

i=1

m∑

n=i+1

δincin +

m∑

i=1

δiicii +
1

G2
δjjcjj

+
2

G

m∑

i=1

δijcij (i & n 6= j) (13)

The faulty mean vector µ1 can be written after a gain fault as:

µ1 = (µ01 µ02 .. Gµ0j .. µ0m)T (14)

µ1 − µ0 = (0 0 .. (G− 1)µ0j .. 0)T (15)

Then:

(µ1 − µ0)
T
Σ

−1
1 (µ1 − µ0) = (

G− 1

G
µ0j)

2 × δjj (16)

We must now compute the function ln |Σ1|
|Σ0|

:

|Σ1| = |A×Σ0 × A| = |A| × |Σ0| × |A| (17)

ln
|Σ1|
|Σ0|

= ln
|A| × |Σ0| × |A|

|Σ0|
= ln |A|2 = lnG2

(18)

Therefore, based on (13), (16) and (18), the analytical model of the

MKLD for fault diagnosis purpose can be written as (19).

4.2. Model validation

To validate the model, we use the same numerical example already

described in section 3.2.3. The fault affects the variable u1, i.e the

fourth variable of the healthy database X̃ .

In Fig.4, MKLD is computed along with fault severity for different

SNR using the direct expression (direct model (2)) and the analytical

model (fault diagnosis model (19)). As seen in this figure, the the-
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Fig. 4. Analytical Model Validation

oretical model for diagnosis perfectly fits with the direct expression

while the noise level is low or null. Nevertheless, the more the noise

level is important, higher will be the difference between the direct

model and the MKLD analytical model for diagnosis.

4.3. Fault estimation: Inverse model

By inverting the analytical model (19), the theoretical estimation of

the fault amplitude that depends on the divergence value ˆMKLD is

finally given by (20), where :

β = 2

m−1∑

i=1

m∑

n=i+1

δincin+

m∑

i=1

δiicii+µ
2
0jδjj−m−2−2× ˆMKLD

γ = 2

m∑

i=1

δijcij − 2µ2
0j × δjj and η = cjjδjj + µ

2
0jδjj

To validate the estimation, we apply a gain fault on u1, with an am-

plitude a in the range a = [0, .., 0.1]. In Fig.5, we plot the estimated
fault amplitude â for different SNR values.
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Fig. 5. Fault amplitude estimation results

We can first notice on this figure that we have for all the SNR

values an overestimation of the actual fault amplitude. This over-

estimation provides a safety margin in a sensible fault diagnosis

context. Secondly, it must be noticed that the estimated fault am-

plitude is close to the actual one for SNR=30dB and SNR=25dB.

However when the SNR decreases (SNR<25dB), the error increases

and becomes important especially for small faults (a < 0.02).
To study the accuracy of the estimation we have computed the es-

timate’s relative error. The estimation of the faulty variable u1,

i.e x4 is x̂4 = (1 + â) × (x4). The relative error, denoted ǫa is:

ǫa = x̂4−x4

x4
= â−a

1+a
.

In Fig.6, the estimate’s relative error is plotted along with the

fault severity for different SNR values. We can see that the relative

error is very small even for SNR=20dB and for small fault amplitude.

We can notice that the variation of ǫa for all the considered SNR

values is always lower than 3.5%. For small fault amplitude, ǫa
decreases along with a for a ∈ [0, 0.02]. Afterwards, ǫa slightly

increases for a > 0.02. However, this modeling error is still lower
than 1.5%. The evolution of the estimation error is mainly due to the

small slope value in the MKLD function for high fault amplitude, so

a very small modeling error increases the estimation error.

5. CONCLUSION

In this paper we have proposed a fault detection and estimation ap-

proach using MKLD. The method allows, for any distributions, the

detection of incipient faults more accurately than other approaches
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MKLD(f, g) =
1

2

{
2

m−1∑

i=1

m∑

n=i+1

δincin +
m∑

i=1

δiicii +
1

G2
δjjcjj +

2

G

m∑

i=1

δijcij +

(
G− 1

G
µ0j

)2

× δjj −m+ lnG2

}
(i & n 6= j)

(19)

â =

3

√√
(−108η + 18βγ − 2β3)2 + 4(6γ − β)3 − 108η2 + 18βγ − 2β3

6 3
√
2

(20)
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Fig. 6. Relative estimation error

based on PCA and fault with lower severity can be considered. For

estimating the fault severity, we have developed an analytical model

of the MKLD (in the Gaussian case) from which the fault ampli-

tude expression is derived. The model has been validated for dif-

ferent noise conditions and its accuracy has been evaluated . The

results prove that for incipient faults, severity estimation based on

this model is accurate with a low relative error and a safety margin

thanks to the overestimation of the actual fault amplitude. For future

works, the sensitivity of our approach to the used estimators will be

studied.
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