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ABSTRACT

We propose using the Low Rank Representation (LRR)

method for segmentation of video frames of glucose con-

centration measurements taken by a novel setup intended for

use in a hand-held device. We propose a sequential LRR

algorithm, that corrects the error in the data matrix at each

point in time and uses it calculate an f data matrix for the next

step. By fixing the error in the data, we are able to segment

the data using fewer number of frames at an early stage of

the chemical reaction. Our aim is to process incoming frames

taken by the camera in real time and use them in a sequential

manner to segment the images and estimate the feature value

of the region of interest. A comparison of standard LRR and

sequential LRR is presented. We evaluate both algorithms on

real data sets with respect to goodness of segmentation, as

well as accuracy of the feature estimates.

Index Terms— Low Rank Representation, spectral clus-

tering, image segmentation, glucose measurement, photome-

try

1. INTRODUCTION

According to the WHO statistics [1], 1.5 million deaths are

directly related to diabetes each year. Currently 9% of the

worlds population have diabetes. Diabetes is a long term dis-

ease which has a direct effect of the increase in blood glucose

concentration [1, 2]. Today, a wide range of hand-held blood

sugar measurement devices are available for purchase and

enable self-monitoring by the patient.

We consider data obtained from an invasive, hand-held de-

vice, that utilizes a novel photometric measurement principle

requiring a much smaller blood sample than the state-of-the-

art devices [3]. Accuracy of the hand-held devices is very

crucial for the patient, as the patient will be prescribed a cer-

tain amount of medication depending on the blood sugar level

indicated by the device. To measure the blood sugar level, the

patient extracts a small blood sample, typically from the fin-

ger. The blood sample is applied to a test strip, which carries

a chemical substance that reacts with the glucose in blood and

changes its color. The color change is directly related to the

underlying glucose concentration and is measured in terms of

the reflected light, referred to as relative remission. A camera

captures the chemical reaction taking place on the test strip

in the form of video frames. Using methods to segment these

images [3, 4], we are able to identify the Region of Interest

(ROI). The ROI is the area, where the blood sample has been

placed and the chemical reaction takes place. The intensity

of the ROI is mapped directly to an estimate of the under-

lying glucose concentration. Figure 1 presents examples of

the chemical reaction captured at different time instances.

In Fig. 1(a) the reaction has not started yet and no change in

relative remission value over the test strip is visible, but rather

a very homogenous reflectivity. In Fig. 1(b) and (c), as we

advance in time, the reaction is taking place and the relative

remission value is decreasing in the ROI. Figure 1(d) shows

the saturation of the reaction and the ROI, where the color

change is clearly identifiable in contrast to surrounding areas,

where a much weaker color change is observable. Low Rank

Representation (LRR) [5, 6] is used to segment data drawn

from a union of multiple subspaces. Using one subspace to

describe the whole data is rarely enough [5, 6]. The more

reasonable approach is to consider the data lying in multiple

subspaces; that is all samples are drawn from a mixture of

low-rank subspaces. Subspace segmentation [7] is a chal-
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Fig. 1. Examples of observed images at different time instants:

(a) t = 0 s, (b) t = 0.3 s, (c) t = 5 s, (d) t = 18 s.

lenging problem that aims at clustering the data into groups

with each group corresponding to a subspace, while correct-

ing possible errors. It has been applied in different fields such

as computer vision [8], [9], [10], image processing [11], [12]
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and system identification [13].

In this paper we apply the LRR subspace segmentation

method for segmentation of blood sugar images. In our

application the images arrive sequentially over time and we

want to take advantage of this property. In [14] a sequential

LRR is presented that introduces a smoothing term in the

optimisation problem to convey the smoothness of sequential

data. However, the processing of the data in this work is

done in batches. Our work is different in the sense that we

apply the standard LRR algorithm to deal with data arriv-

ing sequentially. We correct the incoming data from errors

by subtracting the error term calculated using the previous

frames. We make use of the fact, that the relative remis-

sion of different areas of the test strip change with varying

strength. We assume that our test strip shows three regions:

the region, where the chemical reaction takes place; the test

strip itself, where there is no chemical reaction taking place;

and a transition area between both regions that exhibits a

much weaker change in relative remission. As we advance in

time the relative remission of the regions, where the reaction

takes place changes faster than that of the neighbouring areas.

This motivates the assumption of a union of subspaces.

Our contribution lies in applying LRR to the glucose image

segmentation problem. Furthermore, we propose a novel se-

quential LRR that corrects the error in the data as we proceed

through time. We evaluate both approaches using a real data

set.

The remainder of the paper is organized as follow: Section 2

introduces the LRR principle. The sequential LRR algorithm

is described in Sec. 3. Section 4 introduces our data set and

discusses the results. Finally a conclusion is given in Sec. 5.

2. LOW RANK REPRESENTATION

2.1. Problem Statement

Low Rank Representation (LRR) [5, 6] is used for the seg-

mentation of a union of multiple linear (or affine) subspaces.

Given a set of data vectors, that are drawn from a union of

multiple subspaces, the LRR algorithm aims to find the low-

est rank matrix that represents the data vectors as a linear

combination of others. LRR is different from other compres-

sion techniques such as Sparse Representation (SR), [15] in

the sense that it considers all the data jointly. After finding

the lowest rank matrix, a so-called affinity matrix is calcu-

lated that is used to define an undirected graph and is fed

to a spectral clustering algorithm such as Normalized Cuts

(NCuts) [16]. In the sequel, we will give a short presentation

of the LRR optimisation problem.

Following notation will be used for the remainder of this pa-

per: X will denote a matrix with the ij-th element given by

xij . Vectors will be given by x, while x is used for scalar

quantities andX for constants.

2.2. Low Rank Representation

Let X =
[
x1,x2, . . . ,xN

]
∈ R

M×N be a set of N data

vectors, where each data vector xi represents a sample and

M is the dimension of each data vector. We assume that the

data vectors are drawn from a union of k subspaces {Si}
k
i=1,

which can be represented by a linear combination of vectors

of the dictionaryA =
[
a1, a2, . . . , aN

]
∈ R

M×N . The LRR

problem is given by the followingminimisation problem [5,6]

minimize
Z

Rank
(
Z
)
,

subject to X = AZ,A = X.
(1)

Here Z =
[
z1, z2, . . . , zN

]
is a coefficient matrix with each

vector zi containing the low-rank representation of xi. The

low-rankness is a more suitable criterion for retrieving the

global structure in the data, compared to sparse represen-

tation [5, 6]. The low-rank representation uses the self-

expressiveness property, making use of the data to represent

itself while maintaining the global structure of the data. The

optimal solution to Eq. (1), denoted by Z
∗, is now called the

lowest rank representation of X given a certain dictionary

A. The dictionary is given here by the data itself A = X.

It is intuitive for clustering and segmentation applications to

express the data by itself. To overcome the computational

difficulty of the rank problem in Eq. (1), matrix completion

methods [17–19] are adopted and the problem in Eq. (1) re-

duces to minimising the nuclear norm of Z. The optimisation

problem now reads

minimize
Z

‖Z‖∗,

subject to X = XZ,
(2)

where ‖‖∗ is referred to as the nuclear norm [20].

Since in real applications the presence of noise, and in our

case also outliers, must be taken into consideration, Eq. (2)

needs to be adjusted. This results in following formulation

that is appended a regularization term to compensate for the

error
minimize

Z,E
‖Z‖∗ + λ‖E‖l,

subject to X = XZ+E,
(3)

where ‖ · ‖l denotes e.g. the l2,1 norm, used to deal with

sparse sample specific corruptions or the Frobenius norm,

which deals with Gaussian noise [21]. They are given by

l2,1 norm ‖E‖2,1 =
m∑

j=1

√√√√
n∑

i=1

|eij |2

Frobenius norm ‖E‖F =

√√√√
n∑

i=1

m∑

j=1

|eij |2

The parameter λ is used to tune the effect of the error term

and it can be found empirically in the range 0 < λ < 1. The
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optimisation problem is solved using the inexct-Augmented

Lagrange Multiplier method (inexact-ALM) [22]. Given the

coefficient matrix Z and the error matrix E, we want to seg-

ment the data into the corresponding subspaces. For that, we

need to construct an affinity matrix [5,6], that includes affini-

ties between the data vectors. The low-rank structure obtained

byZ is used to define an affinity matrix and fed into a spectral

clustering algorithm as described in [6].

3. SEQUENTIAL LOW RANK REPRESENTATION

As we advance in time, more frames are obtained by the

photometric measurement setup discussed in [3], represent-

ing the data vectors in our application. Our understanding

of sequential processing is processing the captured frames

sequentially as we advance through time. We perform LRR

at each point in time, always obtaining an error term, that de-

scribes the error of the current data matrix. This is subtracted

from the current data matrix to correct it. The data matrix to

be used in the next step is error-removed, according to the

LRR outcome.

We denote by n a certain point in time such thatn = 1, . . . , N ,

and N is the total number of frames captured. Each new in-

coming frame at time n is given by Fn ∈ R
K×L, where K

and L are the number of rows and columns, respectively. A

frame Fn is first vectorised,

fn = vec
(
Fn

)
,

where fn ∈ R
1×M and M = K × L. The resulting data ma-

trix before removing the error at time n isXn = [f1, . . . , fn]
T .

As explained in Sec. 2.2, we use the data itself as the dictio-

nary.

At each point n in time the standard LRR problem is solved

using X̃n = [X̂n−1; f
T
n ], where X̂n−1 is the error-removed

data matrix at the previous time instance n − 1. The LRR

results in two matrices:

1. The lowest-rank representation matrix Zn, and

2. the error matrix En.

As a final step the current errorEn is subtracted from the data

matrix, such that it becomes

X̂n = X̃n −En.

The process is repeated until the final frame is received and

the data can be segmented. We use ZN , i.e. the final com-

puted coefficient matrix, to construct the affinity matrix as

explained in Sec. 2. The affinity matrix is then fed to spec-

tral clustering algorithm as presented in [15]. The proposed

sequential LRR algorithm is presented in Algorithm 1.

Algorithm 1 Sequential Low Rank Representation

Input: {f1, . . . , fN}
Output: ZN ,EN and segmented images

1: for Each new incoming frame fn do

2: X̃n = [X̂n−1; f
T
n ] ⊲ Update data vector to include

the incoming frame

3: Zn,En ⊲ Perform LRR as in Eq. (3) usingX = X̃n

4: X̂n = X̃n −En.⊲ Remove calculated error from the

data

5: end for

6: ZN ,EN ⊲ Perform LRR as in Eq. (3) usingX = X̃N

7: Construct affinity matrix using ZN [5, 6]

8: Segment using spectral clustering as in [15]

4. EXPERIMENTAL RESULTS

4.1. Data Set & Measurement Setup

We use a real data set consisting of 81 measurements. The

measurements are taken using the photometric measurement

device described in [3]. Whole blood samples of different

glucose concentrations ranging between 30mg/dl to 550mg/l

are used. Each measurement contains N = 582 frames, cor-

responding to a testing time ttest = 19.4 s. The images are

preprocessed as in [3]. The regularization parameter is set to

λ = 0.15 and the Frobenius norm is used for the error term.

4.2. Results

Using the real data we perform two different analysis:

1. Batch Processing: each measurement video consisting of

N = 582 frames is processed as a batch. We denote this:

standard LRR [5, 6].

2. Sequential Processing: the set of N = 582 frames is pro-

cessed sequentially, as described in Algorithm 1. We de-

note this: sequential LRR.

After segmenting the images, we calculate the mean of the

relative remission value of each segmented area in the image.

The ROI is identified as the area with the lowest relative re-

mission value. We take this value to be the estimate of the

relative remission R̂.

We set our algorithm to consider one frame every tskip = 1/10 s,
which is equivalent to skipping 3 captured frames. We start

with the evaluation of the standard LRR batch processing. We

expect that as the glucose concentration in blood increases

the relative remission estimate R̂ decreases. The reason for

this is the more glucose contained in the blood sample, the

stronger the reaction with the test strip and the stronger the

color change with respect to the initial color of the chemical

test strip. Figure 2 (a) depicts the ground truth of glucose

concentrations (GC) versus the estimated remission values

using standard LRR. In Fig. 2 (a) it is clear that R̂ meets the

expected behaviour. Now that we have established that LRR
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(b ) Sequential LRR

Fig. 2. Relative Remission estimates obtained using (a) Stan-

dard LRR and (b) Sequential LRR.

method is applicable to our dataset we evaluate the proposed

sequential LRR algorithm. One advantage of sequentially

(a) (b) (c)

Fig. 3. (a) Original Image, (b) segmentation using standard

LRR at frame N = 582, (c) segmentation using sequential

LRR at frame N = 200.

processing the frames is that fewer number of frames is re-

quired to achieve correct segmentation, as compared to the

batch processing. This comes from removing the error from

the previously arriving data. We compare the outcome of

the segmentation using only the first 200 frames using the

sequential LRR, with the segmentation using the full video

in the standard LRR case. Figure 3 (a) shows an original

glucose image containing air bubbles in the ROI, which can

be seen as outliers. The segmentation obtained by standard

LRR (Fig 3 (b)) does not clearly identify the different re-

gions of the image. Sequential (Fig 3 (c)) LRR on the other

hand is able to correctly segment the image into different

regions. The relative remission estimates R̂ are used here for

evaluation and comparison. For the sequential LRR the seg-

mentation of the ROI is identified from the segmentation at

frame N = 200, while for the standard LRR frame N = 582
is used to identify the region of interest. In Fig. 2 (b) we

can see clearly how the behaviour matches that of Fig. 2 (a).

We are able to properly segment the images and determine

the ROI while achieving similar results as the non-sequential

approach, i.e., the standard LRR.

We investigate the accuracy of both cases of applying LRR to

(a) Standard LRR (b ) Sequential LRR

Fig. 4. Evaluation of accuracy using Clarke’s Error Grid Anal-

ysis for (a) Standard LRR and (b) Sequential LRR.

GC in mg/dl Seq. LRR Stand. LRR State-of-the-art

30 0.15 0.33 0.53

90 1.15 0.47 1.05

150 0.90 1.20 1.97

350 0.95 1.21 1.50

550 1.83 2.32 3.94

Table 1. Relative remission variation coefficient of v
R̂i

for dif-

ferent glucose concentrations (GC) for the sequential LRR,

the standard LRR, and the state-of-the-art mean-shift algo-

rithm [24].

our dataset by drawing the Clarke Error Grids
(
CEG

)
[23].

The CEG plots the estimated glucose concentrations against

the actual glucose concentrations and classifies the error ac-

cording to its medical severity. Figure 4 depicts the ground

truth glucose concentrations versus the estimated glucose

concentrations. The estimated glucose concentrations are ob-

tained using a predefinedmapping function, with its argument

being the estimated relative remission values R̂ [3]. Points

in the CEG that fall in zones A, B are considered clinically

accurate and indicate to the patient a correct course of treat-

ment. On the contrary, measurements that fall in zones C, D

and E are considered incorrect and they can lead to wrong

treatment of the patient. Figure 4 shows the CEG analysis

of both methods, i.e. standard and sequential LRR. It can be

observed that for both methods all measurements fall in zones

A and B, which indicates accurate results and non-harmful

treatment for the patient. In Table 1 we list the relative remis-

sion variation coefficient v
R̂i
, which is calculated as follows.

Let σ
R̂i

be the standard deviation of the estimated relative

remission values R̂ of a certain reference glucose level i and
µ
R̂i

be the corresponding mean value. v
R̂
is defined as

v
R̂i

=

{
σ
R̂i

if i ≤ 100mg/dl
σ
R̂i

µ
R̂i

if i > 100mg/dl

From Table 1 we see that the sequential LRR outperforms the

standard LRR in terms of remission variance coefficient for
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most cases. This can be attributed to the removal of the error

in each step from the data. We also show that both standard

LRR and sequential LRR outperform the state-of-the-art ap-

proach in [24].

5. CONCLUSION

We have presented two different low rank representation

(LRR) approaches to segment blood glucose frames ob-

tained by a novel photometric device: the standard LRR that

processes the data in batches, and the sequential LRR that

processes the data sequentially as it arrives. The sequential

LRR estimates the error in the data at each time instant and

removes it from the current data matrix. Both algorithms are

evaluated using a real data set. We showed that the proposed

sequential LRR algorithm is able to provide more accurate

segmentations of the data using less frames. Furthermore,

a comparison of the relative remission estimates of both the

standard and sequential LRR show the superiority of the

sequential LRR.
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