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Abstract—Various dereverberation and noise reduction algo-
rithms require power spectral density estimates of the anechoic
speech, reverberation, and noise. In this work, we derive a
novel multichannel estimator for the power spectral densities
(PSDs) of the reverberation and the speech suitable also for noisy
environments. The speech and reverberation PSDs are estimated
from all the entries of the received signals power spectral density
(PSD) matrix. The Frobenius norm of a general error matrix is
minimized to find the best fitting PSDs. Experimental results
show that the proposed estimator provides accurate estimates of
the PSDs, and is outperforming competing estimators. Moreover,
when used in a multi-microphone noise reduction and dereverber-
ation algorithm, the estimated reverberation and speech PSDs are
shown to provide improved performance measures as compared
with the competing estimators.

I. INTRODUCTION

Reverberation and ambient noise may degrade the ability of
mobile devices, smart TVs and audio conferencing systems to
process speech signals. While intelligibility does not degrade
in presence of early speech reflections, it can be significantly
deteriorated in reverberant environments due to the overlap
masking effects [1].

Both single- and multi-microphone techniques have been
proposed to reduce reverberation and ambient noise (see [2]
and the references therein). Many of these techniques require
an estimate of the PSDs of the reverberation and the speech,
in particular beamforming-based methods. In our previous
work [3], a multi-microphone minimum mean square error
(MMSE) estimator of the early speech component was im-
plemented as a minimum variance distortionless response
(MVDR) beamformer followed by a postfilter. The reverber-
ation and the ambient noise were treated by both the MVDR
stage and the postfiltering stage. The most difficult task was
to provide an accurate estimation of the speech PSD required
for the postfiltering stage and the reverberation PSD required
for the MVDR stage and for the postfiltering stage. The
reverberation PSD was estimated by averaging the marginal
reverberation levels at the microphones, obtained using the
single-channel estimator proposed in [4]. The speech PSD was
estimated by using the decision-directed approach [5].

Maximum likelihood estimators (MLEs) of time-varying
speech and noise PSD levels were derived in the past. In [6],
the authors proposed to estimate the PSD level of the ambient
noise from signals at the output of a blocking matrix (BM)
which blocks the speech signals. A closed-form maximum
likelihood estimator (MLE) of the noise level was derived w.r.t.

the probability density function (p.d.f.) of the BM outputs.
In [7], a closed-form solution for the MLE of the reverberation
and the anechoic speech PSDs was proposed without applying
any BM. The reverberation was modelled as an additive noise.
Recently, in [8], an MLE for the reverberation PSD level in
noisy environment was proposed. First, the received signals
were filtered by a BM. Due to the complexity of the p.d.f., a
closed-form solution could not be derived. Instead, an iterative
Newton method for finding the maximum likelihood (ML)
estimate was derived. In [9] an optimal estimator in the
ML sense for the reverberation PSD in noisy environment
was proposed without using a blocking stage. Instead, the
reverberation and the anechoic speech PSD levels were jointly
estimated. This MLE requires matrix inversions and is thus
prone to instability. Beyond that, the iterative search (applied
in the joint reverberant and noisy case) might not converge.
Thus, in this paper we adopt a method which estimates the
PSD levels by matching the observed signal PSD matrix with
its model. We also circumvent the blocking stage, since it is
unclear how this stage affects the accuracy of the estimates.

Speech and noise PSD estimation procedures are common
practice in the design of postfilters. In [10], the author
presented a practical estimator of the speech PSD suitable
for spatially white noise fields. Assuming that the noise
components are uncorrelated between microphones, the speech
PSD was estimated by an average of the cross-PSDs. In [11],
the technique was generalized to deal with an arbitrary noise
field, using prior knowledge of the spatial coherence matrix
of the noise. First, marginal estimates of the speech PSD
were obtained from each microphone pair (using the auto-
and cross-PSDs) and then the final estimate was obtained
by averaging all the marginal estimates. In [12], the speech
and noise PSDs are separately estimated. The speech PSD
estimator identifies with the estimator in [11].

In [13], the authors estimated the speech PSD from all
entries of the received signals’ PSD matrix (rather than aver-
aging the marginal microphone-pair estimates). The noise PSD
matrix was assumed to be known. The best fitting value for
the speech PSD was estimated by minimizing the Frobenius
norm of an error matrix. Although, reverberation was not
considered in this reference, the proposed technique based
on the Frobenius norm minimization will be useful in the
development of the proposed method.

In [14], a reverberant and noisy environment was assumed.
The reverberation was modelled as a diffuse sound field with
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time-varying level and the noise PSD matrix was assumed to
be known. The authors proposed to estimate the time-varying
level of the reverberation from the signals at the output of a
BM in a generalized sidelobe canceller (GSC) structure. Since
the speech signal was blocked, the PSD matrix of the BM
outputs contains only reverberation and noise components. The
best fitting value for the reverberation PSD was estimated by
minimizing the Frobenius norm of an error matrix.

In this work, a joint estimator for the speech and the
reverberation PSDs in noisy environment is derived. The rever-
beration PSD is modelled as a diffuse sound field with time-
varying level, while the noise PSD is assumed to be known.
The PSD-matrix of the received signals is first computed,
and then the speech and the reverberation PSDs are jointly
estimated from all entries of the PSD matrix. The Frobenius
norm of a composite error matrix is minimized in order to
find the best fitting speech and reverberation PSDs. Note,
that unlike [13] and [14], here the error matrix depends
on two variables, namely the PSDs of the speech and the
reverberation. As opposed to [8], [9], a closed-form solution
for the speech and reverberation PSDs is obtained.

The paper is organized as follows. In Section II, the problem
is formulated. In Section III, the joint estimator for the speech
and reverberation PSDs is derived. Section IV elaborates
about the dereverberation and noise reduction algorithm used
for the evaluation section. Section V presents the simulation
setup, evaluates the performance of the proposed estimator,
and compares the proposed estimator to two other estimators.
Finally, in Section VI conclusions are drawn and the work is
summarized.

II. PROBLEM FORMULATION

Consider N microphone observations consisting of rever-
berant speech and additive noise. The reverberant speech
can be decomposed into two components, i.e. a direct-path
speech component and a reverberation component. The i-th
microphone observation can then be expressed as

Yi(m, k) = Xd,i(m, k) +Xr,i(m, k) + Vi(m, k), (1)

where Yi(m, k) denotes the i-th microphone observation with
time-index m and frequency index k, Xd,i(m, k) denotes the
direct speech component, Xr,i(m, k) denotes the reverberation,
and Vi(m, k) denotes the ambient noise. Here Xd,i(m, k) is
modeled as a multiplication of the anechoic speech S(m, k)
(as received by the first microphone that was arbitrary chosen
as the reference microphone) and the relative direct transfer
function (RDTF) of the i-th microphone Gd,i(k) , i.e.,

Xd,i(m, k) = Gd,i(k)S(m, k). (2)

The RDTF Gd,i(k) is a pure phase depending on the time
difference of arrival between the i-th microphone and the first
microphone

Gd,i(k) = exp

(
−ι2πk

K

τi
Ts

)
, (3)

where τi is the time difference of arrival (TDOA) between the
i-th microphone and first microphone, Ts is the sampling time
and K is the number of frequency bins. The estimation of τi
is beyond the scope of this paper. The N microphone signals
can be concatenated in a vector

y(m, k) = xd(m, k) + xr(m, k) + v(m, k)

where

y(m, k) =
[
Y1(m, k) . . . YN (m, k)

]T
xd(m, k) =

[
Xd,1(m, k) . . . Xd,N (m, k)

]T
= gd(k)S(m, k),

gd(k) =
[
Gd,1(k) . . . Gd,N (k)

]T
xr(m, k) =

[
Xr,1(m, k) . . . Xr,N (m, k)

]T
v(m, k) =

[
V1(m, k) . . . VN (m, k)

]T
.

The speech signal is modeled as a complex-Gaussian pro-
cess with S(m, k) ∼ NC(0, φS(m, k)). The reverberation and
the noise components of the received microphone signals are
assumed to be uncorrelated and may be modelled by zero-
mean multivariate Gaussian probability density functions. The
PSD matrix of the noise is assumed to be time-invariant and
known in advance (or can be accurately estimated during
speech-absent periods). The PSD matrix of the reverberation
is naturally time-variant, since the reverberation originates
from the speech source. The spatial characteristic of the
reverberation may, however, assumed to be constant, as long
as the speaker and microphones positions do not change.
Therefore, it is reasonable to model the PSD matrix of the
reverberation as a time-invariant normalized matrix with time-
varying level. Finally, the reverberation is modelled as

xr(m, k) ∼ NC (0, φR(m, k) Γ(k)) , (4)

where Γ(k) is the time-invariant spatial coherence matrix of
the reverberation and φR(m, k) is the temporal level of the
reverberation. In the current contribution we assume that the
reverberation can be modelled using a spatially homogenous
and spherically isotropic sound field and determine Γ(k)
accordingly [15], [16]

Γij(k) = sinc
(

2πk

K

di,j
Tsc

)
, (5)

where sinc(x) = sin(x)/x, di,j is the inter-distance between
microphones i and j and c is the sound velocity.

Collecting all definitions, the PSD matrix of the observa-
tions is given by

Φy(m, k) = φS(m, k)gd(k)gH
d (k)

+ φR(m, k) Γ(k) + Φv(k), (6)

where Φv(k) is the PSD matrix of the noise component.
The goal of this work is to jointly estimate the speech level

φS(m, k) and the reverberation level φR(m, k) given a short-
term estimate of Φy(m, k) and the noise PSD matrix Φv(k).
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III. PROPOSED JOINT ESTIMATOR OF THE SPEECH AND
REVERBERATION LEVELS

In this section, the parameter vector φ(m, k) ≡
[φS(m, k) φR(m, k)]

T is estimated given the short-term esti-
mate of the received signals PSD matrix. Whenever possible,
the frequency index k is omitted for brevity. The observations
PSD matrix Φy(m) can be recursively estimated:

Φ̂y(m) = αΦ̂y(m− 1) + (1− α) y(m)yH(m), (7)

where 0 ≤ α < 1 is a smoothing factor. Matching (6)
and (7), the problem at hand may be recast as a system of N2

equations in two variables. Since there are more equations than
variables, the best fitting parameter-set that minimizes the total
squared error may be found by minimizing the Frobenius norm
between the Φ̂y(m) in (7) and its model in (6). Accordingly,
φ(m) is the minimizer of the following cost-function:

φ̂(m) = argmin
φ(m)

||Φe(m)||2F, (8)

where Φe(m) is an error matrix defined by

Φe(m) = Φ̂y(m)−
(
φS(m)gdg

H
d + φR(m)Γ + Φv

)
, (9)

with || · ||2F is the squared Frobenius norm given for any
arbitrary matrix Z by

||Z||2F =
∑
i,j

(Zi,j)
2

= Tr
[
ZHZ

]
. (10)

Following some algebraic steps, the cost function in (8) can
be written as

||Φe(m)||2F = φT(m)Aφ(m)−2bT(m)φ(m)+C(m), (11)

where A is time-invariant 2× 2 matrix defined by

A ≡
( (

gH
d gd

)2
gH

d Γgd

gH
d Γgd Tr

[
ΓHΓ

] ) , (12)

b(m) is time-varying vector defined as

b(m) ≡

 R
{

gH
d

(
Φ̂y(m)−Φv

)
gd

}
R
{

Tr
[(

Φ̂y(m)−Φv

)
ΓH
]}  , (13)

where R {·} is the operator extracting the real-value and C(m)
is defined as

C(m) ≡ Tr
[(

Φ̂y(m)−Φv

)H (
Φ̂y(m)−Φv

)]
. (14)

Since the cost function ||Φe(m)||2F has a quadratic form,
setting its gradient w.r.t. φ(m) to zero yields the following
minimum-point,

φ̂(m) = A−1b(m). (15)

Explicitly, φR(m) and φS(m) are obtained by

φ̂S(m) =
A22 b1(m)−A12 b2(m)

A11A22 −A2
12

, (16)

and
φ̂R(m) =

A22 b2(m)−A21 b1(m)

A11A22 −A2
12

. (17)

Algorithm 1: Multi-microphone reverberation and speech
PSD estimation in noisy environment.
Compute A using (12).
for all time-frames and frequency bins m, k do

Compute Φ̂y(m) using (7).
Compute b(m) using (13).
Compute φ̂S(m, k) and φ̂R(m, k) using (16)
and (17).

Confine φ̂S(m, k) and φ̂R(m, k) to the range
[ε, Z(m)].

end

The estimated PSDs φ̂S(m) and φ̂R(m) must be positive,
and should therefore be restricted to the (+,+) quadrant (or
above some small positive number ε).

In addition, to guarantee physical plausibility, the following
upper bound is applied to the estimates φ̂S(m) and φ̂R(m)

Z(m) ≡ 1

N
yH(m)y(m) (18)

which is equal to the instantaneous level of the observations.
The proposed estimator is summarized in Algorithm 1.

IV. DEREVERBERATION AND NOISE REDUCTION
ALGORITHM

In this section, the dereverberation and noise reduction
algorithm used to examine the proposed estimators is briefly
described. Since S(m) and y(m) are assumed to be zero-mean
complex-Gaussian random variables, the MMSE estimator
of S(m) can be calculated using the multichannel Wiener
filter (MCWF) decomposed into an MVDR-BF filter and a
subsequent postfilter [3]:

Ŝ(m) =
γ(m)

γ(m) + 1︸ ︷︷ ︸
HW(m)

gH
d Φ−1(m)

gH
d Φ−1(m)gd︸ ︷︷ ︸
hH

MVDR(m)

y(m), (19)

where Φ(m) = φR(m) Γ + Φv and γ(m) denotes the a
priori speech to reverberation and noise ratio at the output
of the MVDR-BF. The vector hMVDR(m) is the MVDR-BF
that reduces the noise and reverberation while maintaining
the direct speech undistorted and HW(m) is the single-
channel Wiener filter that is applied to the output of the
MVDR-BF. γ(m) is defined as γ(m) = φS(m)

φRE(m) where
φRE(m) = [gH

d Φ−1(m)gd]−1 denotes the residual reverbera-
tion plus noise at the output of the MVDR-BF.

In [5] (see also [3]), γ(m) was calculated as a weighted av-
erage of a long-term estimator, obtained in the previous time-
frame, and an instantaneous estimate from the current time-
frame, a method known as the decision-directed approach:

γ̂(m) = β
|Ŝ(m− 1)|2

φRE(m− 1)
+ (1− β)

φ̂S(m)

φRE(m)
. (20)

The instantaneous speech PSD is given by:

φ̂S(m) = max
(∣∣hH

MVDR(m)y(m)
∣∣2 − φRE(m), 0

)
. (21)
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Accordingly, two alternative implementations of the decision-
directed approach in (20) can be proposed: 1) estimate φ̂S(m)
and φ̂R(m) using (16) and (17) and then compute (20); or
2) estimate φ̂R(m) using (17), estimate φ̂S(m) using (21) and
then compute (20). In our experiments we examine the two
alternatives.

V. PERFORMANCE EVALUATION

The performance of the proposed estimator is evaluated by:
1) examining the log-error between the estimated values of
φS(m) and φR(m) versus the true speech and reverberation
levels, obtained by convolving the speech signal by the direct
component and by the late component of the acoustic impulse
response, respectively; and 2) utilizing the estimated PSDs
φ̂R(m) and φ̂S(m) in a speech dereverberation and noise
reduction task as explained in Sec. IV.

A. Simulation setup

The experiments consist of reverberant signals plus white
(sensor) noise with various SNR levels. Anechoic speech
signals were convolved with room impulse responses (RIRs),
downloaded from an open-source database collected in our
lab. Details about the database and RIR identification method
can be found in [17]. Reverberation time was set by adjusting
the room panels, and was measured to be approximately
T60 = 0.61 s. The spatial PSD matrix Φv was estimated
using periods in which the desired speech source was in-
active. The loudspeaker was positioned in front of a four
microphone linear array such that the steering vector was set
to gd =

[
1 1 1 1

]T
. The inter-distances between the

microphones were [3, 8, 3] cm. The sampling frequency was
16 kHz, the frame length of the short-time Fourier transform
(STFT) was 32 ms with 8 ms between successive time-
frames (i.e. 75% overlap). The smoothing parameter was set
to α = 0.7 and ε = 10−10. All measures were computed by
averaging the results obtained using 50 sentences, 4–8 s long,
evenly distributed between female and male speakers.

B. Accuracy of the proposed estimator

The performance of the proposed estimator (16)-(17) com-
pared to two existing estimators in terms of log-error between
the estimated PSDs and the oracle PSDs: 1) the reverberation
PSD estimator in [14], denoted henceforth Braun2013; and
2) the speech and reverberation1 PSD estimators in [12],
denoted henceforth Lefkimmiatis2006. For each algorithm, an
identical lower and upper delimitation and identical smoothing
were carried out.

The mean log-errors between the estimated PSD levels and
the oracle PSD levels are presented. In order to calculate the

1Note that the original algorithm [12] assumes noisy environment (and no
reverberation) and aims at estimating the noise PSD given the PSD matrix of
the received signals, with the noise coherence matrix assumed to be known. In
our implementation, the reverberation is treated in the same manner, namely
its PSD should be estimated with the reverberation coherence matrix known
(isotropic and diffused, in our case). The ambient noise PSD matrix (which
is assumed to be known) is subtracted from the PSD matrix of the received
signals and does not participate in the estimation procedure.
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Fig. 1. Log-errors of the proposed reverberation PSD estimator compared
with [14] and [12] (solid line bars) and log-errors of the proposed speech
PSD estimator in comparison with [12] (dashed line bars). The upper part of
each bar represents the underestimation error, while the lower part represents
the overestimation error.

oracle PSD levels of the reverberation, the anechoic speech
was filtered with the reverberation tails of the RIRs. In order
to calculate the oracle PSD levels of the speech, the anechoic
speech was filtered with the direct path of the RIRs. The
reverberation tails were set to start 2 ms after the arrival time
of the direct-path. To reduce the variance of the oracle PSD,
the mean value of the oracle PSDs over all microphones was
computed. The log-error results2 for several SNR levels are
depicted in Fig. 1. The bars are split to distinguish between
underestimation errors and overestimation errors.

It is evident that the proposed speech PSD estimator out-
performs Lefkimmiatis2006 [12] in terms of overall log-error
for all the SNR values. For the proposed reverberation PSD
estimator, the proposed estimator outperforms Braun2013 [14]
for all the SNR values. However, Lefkimmiatis2006 [12]
outperforms the competing estimators for all the SNR values.
This result is reflected in the dereverberation performance in
terms of perceptual evaluation of speech quality (PESQ) scores
but not for the log-spectral distance (LSD) measure. In general,
the log-error for the speech PSD estimator is higher than the
log-error of the reverberation PSD.

C. Dereverberation performance

The performance of the proposed estimator is also examined
by utilizing the estimated PSDs for the joint dereverberation
and noise reduction task. The estimated PSDs were used to
compute the MCWF presented in (19) (practical consideration
can be found in [3]). All MCWF variants, listed bellow, use the
decision-directed approach (20) in implementing the respective
postfilter. The variants differ in the way the speech and rever-
beration PSDs are estimated. The weighting factor β was set
to 0.9. The performance of the dereverberation algorithm was
evaluated in terms of two objective measures, commonly used
in the speech enhancement community, namely PESQ [18] and
LSD. The clean reference for evaluation in all cases was the
anechoic speech signal filtered with only the direct path of the
RIR.

2The definition of the log-error can be found in [3].
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PESQ LSD

signal-to-noise ratio (SNR) 10 dB 20 dB 30 dB 10 dB 20 dB 30 dB

Unprocessed 1.57 1.86 1.94 11.14 7.86 6.04
Oracle φR(m) and φS(m) 2.22 2.33 2.37 5.13 4.60 4.49
Oracle φR(m) and φ̂S(m) using (21) 2.21 2.33 2.37 5.53 4.76 4.55

φ̂R(m) using Braun2013 [14] and φ̂S(m) using (21) 2.17 2.31 2.37 5.67 4.85 4.63
φ̂R(m) and φ̂S(m) using Lefkimmiatis2006 [12] 2.16 2.30 2.36 5.62 4.89 4.69
φ̂R(m) using Lefkimmiatis2006 [12] and φ̂S(m) using (21) 2.20 2.34 2.39 5.73 4.85 4.63
φ̂R(m) and φ̂S(m) using the proposed estimator in (17) and (16) 2.17 2.30 2.35 5.50 4.85 4.66
φ̂R(m) using the proposed estimator in (17) and φ̂S(m) using (21) 2.18 2.31 2.37 5.59 4.83 4.63

TABLE I
PESQ SCORES (LEFT) AND LSD RESULTS (RIGHT) FOR THE MCWF [3] USING VARIOUS ESTIMATORS.

The following MCWF variants were evaluated: 1) using the
oracle speech and reverberation PSDs; 2) using the oracle
reverberation PSD and the speech PSD estimate from (21);
3) using Braun2013’s [14] reverberation PSD estimate and the
speech PSD estimate from (21); 4) using Lefkimmiatis2006’s
reverberation and speech PSD estimates; 5) using Lefkim-
miatis2006’s [12] reverberation PSD estimate and the speech
PSD estimate from (21); 6) using the proposed reverberation
and speech PSDs estimates from (16) and (17); and 7) using
the proposed reverberation PSD estimate from (17) and the
speech PSD estimation from (21). In Table I the perfor-
mance measures for several input SNR levels are depicted.
The proposed estimator outperforms all competing estimators
with respect to the LSD measures. As for the PESQ scores,
Lefkimmiatis2006 [12] using (21) outperforms all competing
estimators.

VI. CONCLUSIONS

In this work a joint estimator for the late reverberant PSD
and the anechoic speech PSD was derived based on the re-
ceived signal PSD matrix. The proposed algorithm minimizes
the Frobenius norm of the error between the measured PSD
and its analytical model. The proposed estimation procedure,
as opposed to the MLE procedures [8], [9], is closed-form
and its computational load is lower. An experimental study
compares the proposed PSDs estimators with other estimators
when used in combination with a MCWF for joint noise
reduction and dereverberation.
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