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Abstract—We investigate the problem of finding the real-valued
vectors h, of size L, and x, of size P , from M independent
measurements ym = 〈am,h〉〈bm,x〉, where am and bm are
known random vectors. Recovery of the unknowns entails solving
a set of bilinear equations, a challenging problem encountered in
signal processing tasks such as blind deconvolution for channel
equalization or image deblurring. Inspired by the Wirtinger flow
approach to the related phase retrieval problem, we propose a
solver that proceeds in two steps: (i) first a spectral method is used
to obtain an initial guess; which is then (ii) refined using simple
and scalable gradient descent iterations to minimize a natural
non-convex formulation of the recovery problem. Our method –
which we refer to as SIGIBE: Spectral Initialization and Gradient
Iterations for Bilinear Equations – can accommodate arbitrary
correlations between am and bm. Different from recent ap-
proaches to blind deconvolution using convex relaxation, SIGIBE
does not require matrix lifting that could hinder the method’s
scalability. Numerical tests corroborate SIGIBE’s effectiveness in
various data settings, and show successful recovery with as few
as M & (L+ P ) measurements.

Index Terms—Bilinear equations, blind deconvolution, non-
convex optimization, spectral initialization, correlated data.

I. INTRODUCTION

Suppose we are given a collection of M scalar measure-
ments ym ∈ R of the form

ym = 〈am,h〉〈bm,x〉 = aTmh · bT
mx, m = 1, . . . ,M (1)

where h ∈ RL and x ∈ RP are unknown. The random
vectors {am}Mm=1 and {bm}Mm=1 are given and assumed to
be zero-mean i.i.d., with identity covariance matrix. We allow
for arbitrary correlation between am and bm; in particular, we
may have am = bm. Assuming that M ≥ (L+ P ), our goal
is to recover h and x, up to an inherent scaling ambiguity.

Solving a (random) system of bilinear equations as in (1) is
a challenging problem typically encountered in signal process-
ing tasks such as blind deconvolution (e.g., in communication
channel equalization and for image deblurring [1], [2]), ar-
ray self-calibration for direction-of-arrival estimation [3], and
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modeling of network diffusion processes [4], just to name a
few applications.
Relation to prior work. While measurements ym in (1)
are bilinear functions of x and h, they are linear in the
entries of the rank-one matrix xhT . Exploiting this insight,
recent approaches have cast the blind deconvolution problem
as one of rank minimization, proposing convex relaxation
algorithms with performance guarantees [1]. These matrix
lifting approaches rely on semidefinite programming (SDP)
relaxation which, unlike the algorithms proposed here, do not
scale well to large dimensions. Although we assume all vectors
are real for simplicity, acquisition in the Fourier domain moti-
vates extensions to the complex case [1], [3]. For complex-
valued vectors and the symmetric setup whereby x = h

and am = bm, the measurements in (1) take the quadratic
form ym = |〈am,x〉|2. Finding x is known as the phase
retrieval problem, which has a long history in the physical
sciences including astronomy, optics and microscopy [5]–[7].
Recent algorithms for phase retrieval include Phaselift [8] and
similar SDP-based methods [9], [10], greedy algorithms such
as GESPAR for sparse x [11], [12], and gradient approaches
like Wirtinger flow [13], [14], which has also been extended
to low-rank matrix recovery [15], [16]. We note that there is
an inherent symmetry to the phase retrieval problem, which is
not present in the general bilinear equations (1).
Contributions. Motivated by Wirtinger flow for phase re-
trieval [13], we propose a two-step algorithm to solve the
bilinear equations (1) which we refer to as SIGIBE: Spectral
Initialization and Gradient Iterations for Bilinear Equations.
In the first step, a spectral method is used to obtain an initial
guess. In the second step, the initialization is refined using
simple and scalable gradient descent iterations to minimize
a natural non-convex formulation of the problem (Section II).
SIGIBE accommodates arbitrary correlations between am,bm

(Section III) and, different from recent approaches to blind
deconvolution using convex programming [1], [3], it does not
require matrix lifting that could hinder the method’s scalability.
Numerical tests in Section IV corroborate the effectiveness
of SIGIBE for various data settings, and show successful
recovery with as few as M & (L + P ) measurements.
Theoretical recovery guarantees are beyond the scope of this
algorithmic paper, but subject of ongoing investigation.
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Notation: Operators (·)T and E [·] denote transposition and
expectation, respectively; | · | is the magnitude of a scalar and
‖·‖ the `2-norm of a vector, [·]i,j the (i, j)-th entry of a matrix
and [·]1:n,1:n the submatrix formed by selecting the first n

rows and columns. The n × n identity matrix is represented
by In, while 0n stands for the n× 1 vector of all zeros, and
0n×p := 0n0

T
p .

II. PROBLEM FORMULATION AND ALGORITHM

In order to recover h and x from the given measurements
(1), a natural criterion is to minimize the residual sum of
squares

min
{x,h}

f(x,h) :=
1

2M

M∑
m=1

(
aTmh · xTbm − ym

)2
. (2)

This is a bilinear, hence non-convex optimization problem.
In order to solve it efficiently, we leverage recent ideas
in [13] for phase retrieval, to propose judiciously initialized,
simple gradient descent iterations that minimize f(x,h). In
the sequel, we first present the gradient iterations and then
specify a simple procedure to obtain an accurate initial guess
of {x,h}. These two steps comprise SIGIBE.

A. Gradient iterations

With i denoting an iteration index, the outputs {x0,h0} of
the spectral initialization are refined via the following gradient
iterations

xi+1 = xi − µi|x∇xf(xi,hi) (3)

hi+1 = hi − µi|h∇hf(xi,hi) (4)

where the expressions for the gradients of f(x,h) in (2) are

∇xf(x,h) =
1

M

M∑
m=1

(
aTmh · xTbm − ym

) (
aTmh

)
bm (5)

∇hf(x,h) =
1

M

M∑
m=1

(
aTmh · xTbm − ym

) (
bT
mx

)
am. (6)

Several alternatives to set the adaptation rules for the stepsizes
µi|x and µi|h arise, each leading to different convergence and
recovery performances [17], [18]. The simulations in this paper
will be run using rules of the form µi|x = µi/µ̄i|x, where
µi = min

{
µmax, 1 − e−i/(−ithr ln(1−µmax))

}
[13], and the

normalizing constant µ̄i|x is set to ‖x‖2 – which can be either
known, estimated from the spectral initialization, or replaced
with ‖xi‖2. Values for the parameters µmax and ithr are chosen
in Section IV.

B. Initialization via singular-value decomposition

To build intuition into the general spectral initialization
method developed in Section III, here we first introduce a
simple but instructive initialization based on the singular-value
decomposition (SVD) of the non-symmetric L× P matrix

YNS :=
1

M

M∑
m=1

ymambT
m. (7)

Suppose that am and bm are uncorrelated for each m =

1, . . . ,M . Plugging in the definition of ym, and taking
expected value while using the moment assumptions on
{am,bm}Mm=1 yields

E [YNS ] =
1

M

M∑
m=1

E
[
amaTm

]
hxTE

[
bmbT

m

]
= hxT (8)

which is a rank-one matrix. Since YNS → E [YNS ] = hxT

as M → ∞ by the Strong Law of Large Numbers (LLN),
one would expect that if the number of measurements is large
enough then the dominant left-singular vector of YNS will be
close enough to the direction of h, and likewise the dominant
right-singular vector will align with x. This suggests the
initialization scheme tabulated under Algorithm 1, whereby the
dominant right and left singular vectors of YNS are obtained
using a power method [19].

Algorithm 1: Spectral initialization for uncorrelated data

INPUTS: {ym}Mm=1,{am}Mm=1, {bm}Mm=1, and IPmax

OUTPUTS: initial estimates h0 and x0

Compute YNS . Resorting to a power method, ini-
tialize v0 as a unit-norm random vector and iterate
ui = YNSvi/‖YNSvi‖ and vi+1 = YT

NSui/‖YT
NSui‖,

for i = 0, 1, . . . , IPmax. When done, compute σ2 =
‖YNSvIP

max
‖‖YT

NSuIP
max

‖ and return x0 = σvIP
max

and
h0 = σuIP

max
.

C. Computational complexity

One of the advantages of SIGIBE is that its complexity
scales better than that of SDP-based solvers when L, P and
M grow large. To quantify the incurred computational cost we
need to analyze both steps of our solver. The gradient updates
in (3)-(4) require O

(
M(L + P )2

)
operations per iteration.

For Algorithm 1, forming matrix YNS requires O
(
MLP

)
operations, while the power method requires O

(
IPmaxLP

)
. In

practice, setting IPmax = 50 yields good results. Hence, when
M is in the order of hundreds or more, the overall complexity
is dominated by the gradient iterations. All in all, the cost is
on the order of O

(
IGmaxM(L+P )2

)
, where IGmax denotes the

number of iterations of the gradient descent method.
The initialization proposed thus far requires the vectors

am and bm to be uncorrelated [cf. 8]. Furthermore, it is
based on a non-symmetric matrix which may complicate
the theoretical analysis. In order to accommodate arbitrary
correlation between am and bm (including am = bm), in
the next section we endow SIGIBE with a more general
initialization method that relies on an augmented data matrix.

III. SPECTRAL INITIALIZATION FOR CORRELATED DATA

To overcome the aforementioned limitations, one can intro-
duce the augmented vectors γm := [aTm, bT

m]T ∈ RL+P and
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form the symmetric data matrix

YS =
1

M

M∑
m=1

ymγmγT
m. (9)

It follows that ym = (1/2)γT
mAγm, where A is the (L +

P )× (L+ P ) symmetric, rank-two matrix given by

A =

[
h

0P

] [
0T
L xT

]
+

[
0L

x

] [
hT 0T

P

]
=

[
0L×L hxT

xhT 0P×P

]
.

Plugging ym back in (9) and taking expectations yields

E [YS ] =
1

2
E
[
γ1γ

T
1 Aγ1γ

T
1

]
. (10)

The expectation of the quartic form in the right-hand-side of
(10) can be evaluated if one assumes that for each m =

1, . . . ,M , vectors am ∼ N (0L, IL) and bm ∼ N (0P , IP )

are i.i.d. (with standard multivariate Gaussian distributions),
and have known cross-correlation matrix C := E

[
a1b

T
1

]
∈

RL×P . Thus, the augmented measurement vectors are also
Gaussian i.i.d., i.e., γm ∼ N (0L+P ,S), where

S =

[
IL C

CT IP

]
. (11)

Now, for a Gaussian random vector a ∼ N (0,Σ)

and a deterministic matrix M, the fourth-order moment
E
[
aaTMaaT

]
= Σ

(
M+MT

)
Σ + tr[MΣ]Σ [20]. The

expectation in (10) is thus

E [YS ] = SAS+ (1/2)tr [AS]S (12)

and our goal is to determine those eigenvectors of E [YS ] from
which one could hopefully recover x and h. To this end, define
Ỹ := S−1YS (recall S is given) and consider E

[
Ỹ
]

which
from the structure of A, S and (12) can be written as

E
[
Ỹ
]
= AS+ (1/2)tr [AS] IL+P

=

[
hxTCT hxT

xhT xhTC

]
+ (xTCTh)IL+P . (13)

It follows that E
[
Ỹ
]

has: (i) an eigenvector v1 =

1√
2

[
hT /‖h‖, xT /‖x‖

]T
with eigenvalue λ1 = 2xTCTh +

‖x‖‖h‖; (ii) an eigenvector v2 = 1√
2

[
−hT /‖h‖, xT /‖x‖

]T
with eigenvalue λ2 = 2xTCTh− ‖x‖‖h‖; and (iii) all other
eigenvalues are xTCTh.

A. Power method

Leveraging E
[
Ỹ
]
’s favorable eigenstructure [cf. (i)-(iii)],

we initialize {x0,h0} based on Ỹ using the following three-
step algorithm. Note that one can avoid the matrix-matrix
multiplication in forming Ỹ, by precomputing γ̃m := S−1γm

and then evaluating Ỹ = M−1
∑M

m=1 ymγ̃mγT
m. Inverting S

is still required, though.
The following lemma states two useful asymptotic proper-

ties of the initialization {x0,h0} generated by Algorithm 2.

Algorithm 2: Spectral initialization for correlated data

INPUTS: {ym}Mm=1,{am}Mm=1, {bm}Mm=1, C, and IPmax

OUTPUTS: initial estimates h0 and x0

Step 1: Finding z∗. Compute Ỹ. Resorting to a power
method, initialize z0 as a unit-norm random vector and
then iterate zi = Ỹzi−1/‖Ỹzi−1‖ for i = 1, . . . , IPmax.
Return z∗ = zIP

max
.

Step 2: Finding the initializations h̃0 and x̃0 using z∗.
Extract z̄top := [z∗1 , ..., z

∗
L]

T , z̄bot := [z∗L+1, ..., z
∗
L+P ]

T

from z∗, and normalize z̄h := z̄top/‖z̄top‖, z̄x :=
z̄bot/‖z̄bot‖. Stack z̄h and z̄x in vA := 1√

2
[z̄Th , z̄

T
x ]

T ,
vB := 1√

2
[−z̄Th , z̄

T
x ]

T , then compute λA = ‖ỸvA‖,
λB = ‖ỸvB‖ and λxh = (λA + λB)/2. Finally, set
h̃0 =

√
λxhz̄h and x̃0 =

√
λxhz̄x.

Step 3: Fixing the sign of the initializations. If the sign of
the entries [Ỹ]1,L+1 and that of [h̃0x̃

T
0 ]1,1 coincide, return

h0 = h̃0 and x0 = x̃0. Otherwise, return h0 = −h̃0 and
x0 = x̃0.

Lemma 1 As M → ∞, then: (P1) ‖h0‖ = ‖x0‖ =√
‖h‖‖x‖, and (P2) h0x

T
0 = hxT .

Proof: First note that as M → ∞, the LLN guarantees that
Ỹ = S−1E

[
ỸS

]
. Second, if IPmax is large enough, Step 1’s

output z∗ is the dominant eigenvector of Ỹ. Asymptotically,
from (i)-(iii) the dominant (unit-norm) eigenvector can either
be v1 = 1√

2

[
hT /‖h‖, xT /‖x‖

]T
or v2 = 1√

2

[
− hT /‖h‖,

xT /‖x‖
]T

, with associated eigenvalues λ1 = 2xTCTh

+‖x‖‖h‖ and λ2 = 2xTCTh −‖x‖‖h‖. If xTCTh > 0 the
main eigenvector is either: (a.1) z∗ = v1, or (a.2) z∗ = −v1.
On the other hand, if xTCTh < 0, we have that either: (b.1)
z∗ = v2, or (b.2) z∗ = −v2.

Suppose that (a.1) holds true and z∗ = v1. Then, we have
that z̄h = h/‖h‖, z̄x = x/‖x‖, vA = v1, vB = v2, λA =

λ1, λB = −λ2 and λhx = ‖h‖‖x‖. This implies that h̃0 =√
λxhz̄h =

√
‖x‖/‖h‖h and x̃0 =

√
λxhz̄x =

√
‖h‖/‖x‖x.

Then, it follows that ‖h0‖ = ‖h̃0‖ =
√
‖x‖‖h‖ and ‖x0‖ =

‖x̃0‖ =
√
‖h‖‖x‖, so that the claim in (P1) follows. If (a.2)

holds true, then one has z̄h = −h/‖h‖ and z̄x = −x/‖x‖.
This leads to λxh = ‖h‖‖x‖, h̃0 = −

√
‖x‖/‖h‖h and x̃0 =

−
√
‖h‖/‖x‖x, so that (P1) is again true. Likewise, one can

show that when (b.1) holds, then z̄h = −h/‖h‖ and z̄x =

x/‖x‖, which leads to λxh = ‖h‖‖x‖, h̃0 = −
√
‖x‖/‖h‖h

and x̃0 =
√
‖h‖/‖x‖x. Finally, for (b.2) one has z̄h = h/‖h‖

and z̄x = −x/‖x‖, which leads to λxh = ‖h‖‖x‖, h̃0 =√
‖x‖/‖h‖h and x̃0 = −

√
‖h‖/‖x‖x. Both for (b.1) and

(b.2), property (P1) is true.
In the previous analysis we did not include the effect of

changing the sign of h̃0 (Step 3 of Algorithm 2). The reason
was that the sign is irrelevant for the claim (P1), which pertains
to the norms of {x0,h0}. However, the signs matter for the
claim (P2). In the four cases analyzed before [(a.1), (a.2), (b.1)
and (b.2)] we showed that h̃0 is either ±

√
‖x‖/‖h‖h and
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that x̃0 is ±
√

‖h‖/‖x‖x. This implies that the outer product
h̃0x̃

T
0 will be either hxT (if the signs coincide) or −hxT (if

the signs are different). The purpose of Step 3 is to change
the sign of one of the initializations when h̃0x̃

T
0 = −hxT .

After that change h0x
T
0 = hxT holds under the four cases, as

claimed in (P2). �

Lemma 1 states that when M → ∞, Algorithm 2 identifies
{x,h} up to an inherent scaling ambiguity. Although the
generated initializations have the same norm, if available
information about the value of ‖x‖ and ‖h‖ can be easily
incorporated into the algorithm. In closing, a quick remark on
the algorithm’s complexity is in order.

Remark 1 The computational cost incurred by Algorithm 2 is
higher than that for computing YNS and running Algorithm 1.
The reason is twofold: a) the power method used in Algorithm
2 is more involved and operates on a larger matrix, and b)
computing matrix Ỹ requires inverting the block matrix S.
To be specific, the complexity associated with Algorithm 2 is
dominated by Step 1, which requires: a) O

(
Imax(L+P )2

)
it-

erations for the power method, and b) O
(
(L+P )3

)
operations

to compute S−1 and then O
(
M(L + P )2

)
more to evaluate

Ỹ = M−1
∑M

m=1 ym(S−1γmγT
m). Note that in online setups

where {x,h}, hence ym, can change frequently and the value
of (S−1γmγT

m) remains the same, the complexity of the
matrix inversion can be neglected. In any case, SIGIBE’s
overall complexity is dominated by the gradient iterations with
cost O

(
IGmaxM(L+ P )2

)
.

B. Special cases

We now consider two important special cases subsumed
by our general formulation. In the first, am and bm are
uncorrelated for each m = 1, . . . ,M as in Section II-B. In
this case C = 0L×P and S = IL+P . Hence, simplifying
(12) yields E [YS ] = A (notice that tr [A] = 0). Then it
follows that E [YS ] = A has: (i) the eigenvector v1 =
1√
2

[
hT /‖h‖, xT /‖x‖

]T
with eigenvalue λ1 = ‖x‖‖h‖;

(ii) the eigenvector v2 = 1√
2

[
−hT /‖h‖, xT /‖x‖

]T
with

eigenvalue λ2 = −‖x‖‖h‖; and (iii) all other eigenvalues are
zero.

The other special case is when am = bm (fully correlated),
so that C = IP and

S =

[
IP IP
IP IP

]
.

Simplifying (12) for this particular S, one observes that each
of the four P ×P blocks of E [YS ] are identical and equal to
e.g., the top-left one [E [YS ]]1:P,1:P = hxT+xhT+(xTh)IP .
Then it follows that [E [YS ]]1:P,1:P has: (i) the eigenvector
v1 = x/‖x‖+h/‖h‖ with eigenvalue λ1 = 2xTh+‖x‖‖h‖;
(ii) the v2 = x/‖x‖ − h/‖h‖ with eigenvalue λ2 = 2xTh−
‖x‖‖h‖; and (iii) all other eigenvalues are xTh. This can be
used to simplify Algorithm 2, that now operates over a matrix
with smaller size and does not require pre-whitening with S−1.

IV. NUMERICAL TESTS

Here we present preliminary simulation results to asses
SIGIBE’s performance. Three test cases are considered: uncor-
related, loosely correlated and highly correlated measurement
vectors am and bm, for m = 1, . . . ,M . The default setup
is as follows: P = 64 and L = 128, while vectors x

and h are generated randomly according to a multivariate,
zero-mean Gaussian distribution with variances σ2

x = 42 and
σ2
h = 12, respectively. The number of the gradient iterations is

IGmax = 500 and the stepsize adaptation rule uses µmax = 0.4,
ithr = 75, µ̄i|x = ‖xi‖2 and µ̄i|h = ‖hi‖2. Results are
averaged across 100 realizations of {x,h}.

Uncorrelated measurement vectors. Five algorithms are
adopted to carry out the comparisons: A1) SIGIBE using
Algorithm 1; A2) SIGIBE using Algorithm 2 for C = 0;
A3) random initializations with K1 = 5 seeds; A4) random
initializations with K2 = 15 seeds; and A5) SDP relax-
ation based on matrix lifting [1]. The relative error err =

‖xhT − x̂ĥT ‖F /‖xhT ‖F is adopted as figure of merit, where
‖ · ‖F denotes the Frobenius norm. The results are plotted
in the first (left) column of Fig 1. The top panel reports
the median error and the bottom one shows the probability
of successful recovery. The first observation is that when
the number of observations is small so that M ≤ 1.5L,
none of the algorithms is able to find the solution. Note that
M = 1.5L = L + S, so that M = 1.5L is the minimum
number that yields as many equations as unknowns. On the
other hand, when M ≥ 8L all algorithms find the optimal
vectors (up to scaling). Within the intermediate range, we
observe that the less computationally demanding SIGIBE vari-
ants outperform their competitors. Moreover, the algorithms
based on random initializations perform surprisingly well,
especially when M is large. Finally, although both SIGIBE
variants perform very similarly, the slight advantage of using
Algorithm 1 can be attributed to the fact that YNS is smaller,
so that the approximation to E [YNS ] is more accurate for
each M . Regarding the running times, if we set as reference
the running time of A1 (which is the fastest), the speed of A2
is similar, A3 is 5.0 times slower, A4 14.9 times slower, and
A5 is on average 20.4 times slower than A1.

Correlated measurement vectors. For simplicity, a setup
with P = L = 128 and C = ρIP is considered. Due to
space limitations, Fig. 1 presents results for only two values
of ρ. The two panels in the second (center) column correspond
to ρ = 0.25 and the two in the third (right) column correspond
to ρ = 0.75. Once more, algorithms A1-A5 are compared here
(with the actual C used in A2). The main observation is that
configurations with higher correlation are more challenging.
For ρ = 0.25, M must be in the order of 5.5L, while
for ρ = 0.75, M = 6.5L is required. The results confirm
the previous findings: SIGIBE outperforms the other tested
alternatives and for high values of M all algorithms are able
to find the optimal solution. Interestingly, A1 which implicitly
assumes uncorrelated am and bm, works satisfactorily for the
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(c) Correlated: ρ=0.75
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(b) Correlated: ρ=0.25
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Fig. 1. Recovery performance of the joint identification of x and h using 5 different algorithms. The top row reports the median error, and the bottom one
the percentage of tests able to recover the exact solution (up to a relative error of less than 10−3). Each column represents a different test case.

values of ρ tested.

V. CONCLUSIONS

We developed SIGIBE – a carefully initialized, simple
gradient descent algorithm to solve for {x,h} in a system
of M bilinear equations ym = 〈am,h〉〈bm,x〉. SIGIBE can
accommodate correlations between am and bm, and scales
well to high-dimensional problems. Our current research seeks
to substantiate the encouraging performance observed in simu-
lated tests through theoretical recovery guarantees, and extend
SIGIBE to the complex case.
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