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Abstract—The analysis of the quantization error in fixed-
point arithmetic is usually based on simplifying assumptions.
The quantization error is modelled as a random variable which
is independent of the quantized variable. This contribution
investigates the wordlength reduction of a digital multiplier
in greater detail. The power spectrum of the quantization is
expressed by the power spectrum of the multiplier input. The
analytical results agree with measurements of the quantization
error. The presented error model is shown to be superior to the
simplified one for wordlengths in the range of eight bit.

Index Terms—Finite wordlength effects, error analysis, quan-
tization, digital arithmetic, Gaussian processes.

I. INTRODUCTION

Quantization effects in digital filters have been extensively
studied when fixed-point arithmetic was mandatory for digital
processing systems with real-time capability. The interest
declined when floating-point processors with high clock rates
became available. The classical knowledge on the different as-
pects of fixed-point quantization is found in standard textbooks
e.g. [1]–[4].

Recently fixed-point arithmetic with short wordlength re-
gains attention for reasons like cost and power consumption.
Intelligent sensors and devices require front-end data process-
ing and machine-learning while cost constraints in the cent-
range prevail. Other applications require long battery life such
that power consumption has to be minimized by saving digits.

DSP systems have been designed by optimization using
search algorithms in [5], [6]. Current research interests lie
in the design and evaluation of systems with fixed-point
arithmetic by both analytic methods and simulation [7], [8].
Descision errors in communication systems are studied in [9]
where quantization noise is assumed to be signal independent.
The estimation of the output power spectrum by a linear
filter model is investigated in [10]. Filters with poles close
to the unit circle are designed in [11] where the noise
analysis assumes a uniform roundoff noise distribution. The
implementation of linear filters is discussed in [12], roundoff
errors are modelled by an additive system. Very recently, [13]
consider L1-norm error bounds for wave digital filters and [14]
investigate signal quantization for control applications.
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This contribution reconsiders the power spectrum of the
quantization error of a digital multiplier. There are no assump-
tions either on the probability mass of the discrete error values
nor on their correlation. Instead the autocorrelation of the
quantization error is expressed in terms of the autocorrelation
of the multiplier input. Here a joint normal distribution is
assumed and the finite wordlength of the input is taken into
account.

Secs. II and III introduce quantization and finite wordlength
multiplication. After a review of a classical quantization model
in Sec. IV, a more detailed multiplier model is presented in
Sec. V. It allows to derive explicit relations of the power
spectrum of the quantization error in Sec. VI. The analytical
results are compared to measurements of the quantization error
in Sec. VII.

II. QUANTIZATION

A. Quantization of continuous and discrete variables

The term quantization is used both for the conversion of an
analog signal into a digital one (AD-conversion) and for the
wordlength reduction in digital systems.

In analog-to-digital conversion quantization describes the
mapping of a continuous quantity x to another quantity y
which is restricted to a finite set of values. In binary represen-
tation with a wordlength of w bit there are up to 2w different
states. Typical number representations like two’s complement
or sign-and-magnitude representation consist of a sign bit and
a fractional part with w − 1 bits. The smallest step change
in quantized values is Q = 21−w such that the number
representation for y is

y = λQ with λ ∈ L . (1)

For sign-and-magnitude representation the set L is given by

L = {λ ∈ Z|1−Q−1 ≤ λ ≤ Q−1 − 1} , (2)

while two’s complement representation permits also the value
λ = −Q−1 = −2w−1.

In digital filters quantization denotes the mapping from a
digital signal x with wordlength wx to another digital signal
y with a smaller wordlength wy < wx. The description by (1)
and (2) holds for both signals with sets Lx and Ly described
by Qx = 21−wx and Qy = 21−wy , respectively.

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 1848



x

y = Q(x)

−8Qx −4Qx −Qx

Qx 4Qx 8Qx

−2Qy

−Qy

Qy

2Qy

x

δ = E(x)

−8Qx −4Qx

4Qx 8Qx

− 1
2Qy

1
2Qy

Fig. 1. Top: Quantization law y = Q(x) for sign-and-magnitude truncation.
Solid line: quantization of continuous variable x, dots: quantization of discrete
variable x with quantization step Qx, dashed line: identity y = x. Bottom:
Quantization error law δ = E(x) = Q(x)−x for the above quantization law.

B. Quantization law and quantization error law
The quantization process from Eq. (1) is described by a

mapping through the quantization law Q(x) as y = Q(x) .
Fig. 1 shows an example for wordlength reduction from wx to
wy = wx−2 by sign-and-magnitude truncation, as applied for
the reduction to limit cycles. The corresponding quantization
error δ is given by the difference

δ(x) = y(x)− x = Q(x)− x = E(x) . (3)

Here E(x) denotes the quantization error law which maps the
quantity x onto its quantization error δ(x), see Fig. 1.

III. FINITE WORDLENGTH MULTIPLICATION

The multiplication of finite wordlength signals is explained
in Fig. 2. The input signal v with wordlength wv is multiplied
by the value of a multiplier coefficient c with wordlength
wc. The value of the multiplication is x and its correct
representation requires a wordlength of wx = wv + wc − 1.
Quantization according to the quantization law Q(x) reduces
the wordlength of the resulting signal y to wy . A typical value
is wy = wv .

v = λQv ×
x = κQx Q(x)

y = ηQy

c = γ Qc

Fig. 2. Finite wordlength multiplication. Input signal v, multiplier coefficient
c, exact multiplication value x, quantized multiplication value y, quantization
law Q(x). The integers λ, γ, κ, η and the various quantization steps Q are
explained in Secs. II-A and V-B.

In digital filters, the variables v, x, y are sample values
of discrete-time signals, with time variable k, i.e. v(k), x(k),
y(k). Also the multiplier coefficient can vary with time.

Thus also the quantization error δ(k) = y(k)−x(k) varies in
each time step. It depends in a deterministic way on the current
input signal, the multiplier value and the quantization law.
However, this dependency is not easy to quantify. Furthermore
the input signal itself might be a random signal.

Therefore the quantization error is usually modelled as a
random variable. Its properties depend on certain assumptions
as discussed in the following sections.

IV. THE Q2/12 QUANTIZATION MODEL

The most simple and most widely used quantization model
is based on the assumption that the quantization error is uni-
formly distributed (e.g. [1]–[4]). For quantization by rounding
the variance of the quantization error is calculated as

σ2
δ =

∫ ∞
−∞

δ2pδ(δ) dδ =
1

Qy

∫ Qy/2

−Qy/2
δ2 dδ =

Q2
y

12
. (4)

The simplicity of this result is based on the assumption that
the quantization error has a probability density function pδ(δ),
which is independent of the density of the quantized signal.

When considering the quantization error δ(k) as a random
signal, a further assumption on the covariance of subsequent
samples is required. It is commonly assumed, that these
samples are independent of the multiplier value, not correlated
with the unquantized variable and uncorrelated among them-
selves. The quantization error is then a white noise sequence
with a constant power spectral density.

The above assumptions lead to a simple and popular model
for the quantization noise. Its effect is described as an additive
white noise source with variance Q2/12. Including additive
noise sources at all quantization points of a digital system al-
lows to carry out the analysis of roundoff noise in the familiar
framework of linear and time-invariant systems. Further details
can be found e.g. in [1]–[4].

This additive noise source model has proven to be successful
for the analysis of fixed point arithmetic when the wordlength
after quantization is not too small (e.g. above 8 bit). However,
deviations from the white noise source can be observed for
systems with smaller wordlength and for certain multiplier
values (see Sec. VII). Thus a more detailed analysis of the
sequence of quantization errrors is required.

V. A DETAILED DIGITAL MULTIPLIER MODEL

An in-depth analysis of the quantization error of a digital
multiplier is performed here in three steps:
• Model the input signal v(k) as a random process.
• Derive the properties of the exact multiplier output x(k).
• Derive the properties of the quantization error δ(k).

A. Multiplier input signal v(k)

The multiplier input signal v(k) is assumed to be a realiza-
tion of a stationary random process with the joint probability
mass function

fv1,v2(v1, v2;m) =
∑
λ1∈Lv

∑
λ2∈Lv

pλ1,λ2δ(v1−λ1Qv)δ(v2−λ2Qv).

(5)
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The variables v1 and v2 are values spaced m samples apart,
i.e. v1 = v(k) and v2 = v(k + m). The set of integer values
Lv is defined as in (2) with quantization step Qv .

The probabilities pλ1,λ2 are calculated from a two-
dimensional normal distribution Nvv as

pλ1,λ2
=

∫
Ωλ1

∫
Ωλ2

Nvv(v1, v2|0,R) dv1 dv2, (6)

with the joint probability density function

Nvv(v1, v2|0,R) =
1

2πσ2
v

√
|R|

exp

(
− 1

2σ2
v

vTR−1v

)
,

(7)
defined by the vector v and the covariance matrix R

v =

[
v1

v2

]
R =

[
1 r
r 1

]
. (8)

The covariance matrix R contains the normalized autocorrela-
tion r which is related to the autocorrelation sequence Rvv(m)

r = r(m) =
1

σ2
v

Rvv(m). (9)

The integration regions Ωλ for λ = λ1 and λ = λ2 in (6)
are centered around the quantized values v = λQv and also
include the tails of the distribution

Ωλ =


[−∞, 1

2Qv − 1] λ = 1−Q−1
v

[(λ− 1
2 )Qv, (λ+ 1

2 )Qv] 1−Q−1
v < λ < Q−1

v − 1

[− 1
2Qv + 1,∞] λ = Q−1

v − 1 .
(10)

B. Exact multiplier output signal x(k)

The corresponding relations for the variable x after exact
multiplication with a coefficient c follow in a straightforward
way from Sec. V-A. The discrete values of x are exact
multiplies of v as shown in Fig. 2. Thus also the standard
deviation σv of the joint probability density (7) is scaled
accordingly. The resulting relations are compiled as

x = cv = λγ QvQc = κQx, σx = c σv, (11)

with Qx = QvQc and κ = λγ.
The underlying joint probability density becomes

Nxx(x1, x2|0,R) =
1

2πσ2
x

√
|R|

exp

(
− 1

2σ2
x

xTR−1x

)
.

(12)
Integration around the discrete values κQx gives the joint
probabilities pκ1,κ2

. The integration regions Ωκ1
and Ωκ2

are
defined similar to (10) with Q = Qx. With

pκ1,κ2 =

∫
Ωκ1

∫
Ωκ2

Nxx(x1, x2|0,R) dx1 dx2 (13)

follows the joint probability mass function

fx1,x2
(x1, x2;m) =

∑
κ1∈Lx

∑
κ2∈Lx

pκ1,κ2
δ(x1−κ1Qx)δ(x2−κ2Qx),

(14)
which is required for the calculation of the quantization error.
The index set Lx is defined as in (2) with κ and Qx.

C. Quantization error δ(k)

The quantization error depends on the quantization law
Q(x) or directly on the quantization error E(x), see (3) and
Fig. 3. The notation in the figure emphasizes that the input
signal x(k) represented by the index κ(k) and the quantization
error δ(k) adopt different values in each time step k.

x(k) = κ(k)Qx

wx
E(x)

δ(k)

wy

Fig. 3. Description of a quantizer which reduces the wordlength wx after
multiplication to wy . The quantization error sequence δ(k) is determined by
the nonlinear quantization error law E(x).

Of interest is the noise power of the quantization error or –
more general – its autocorrelation function Rδδ(m). It can be
obtained from the joint probability mass function in (14) as

Rδδ(m) =

∞∫∫
−∞

E(x1)E(x2)fx1,x2
(x1, x2;m) dx1 dx2

=
∑
κ1∈Lx

∑
κ2∈Lx

pκ1,κ2
E(κ1Qx) E(κ2Qx) . (15)

The probabilities pκ1,κ2
depend via (8), (9) and (12) on the

autocorrelation sequence Rvv(m) at the input of the multiplier.
Thus (15) provides an expression for the dependency of the
autocorrelation sequence Rδδ(m) of the quantization error on
the autocorrelation sequence Rvv(m) at the input.

It would be even more useful to have a corresponding
relation in the frequency domain, i.e. to express the power
spectrum of the quantization error by the power spectrum at
the input.

VI. POWER SPECTRUM OF THE QUANTIZATION ERROR

Power spectra in nonlinear control circuits have been inves-
tigated in [15]. A more direct relation than the one suggested
by (15) can be found through a representation of the joint
normal density (12) by Mehler’s formula [15, Ch. XVII 2.1],
[16], [17]. This representation has been introduced to the
analysis of quantization errors in digital filters by Meyer [18]
based on previous work [19].

A. Series expansion of the autocorrelation sequence

Mehler’s formula expands the joint probability density func-
tion (12) into the product of Hermite polynomials

Nxx(x1, x2|0,R) =

1

2πσ2
x

exp
(
− 1

2σ2
x
xTx

) ∞∑
n=0

rn(m)

n!
Hn( x1

σx
)Hn( x2

σx
) . (16)

An outline of the proof is given in the appendix. Note that
unlike in (12) the dependence on the normalized autocorrela-
tion r(m) is of polynomial form which makes the subsequent
analysis much simpler.
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Following the approach from [18] insert (16) into (13) to
obtain a series expansion of the probabilities pκ1,κ2

pκ1,κ2
=

1

2πσ2
x

∞∑
n=0

r(m)n

n!
an(κ1) an(κ2) , (17)

where the coefficients an(κ) for κ = κ1/2 depend on the
region of integration Ωκ

an(κ) =

∫
Ωκ

exp

(
− x2

2σ2
x

)
Hn

(
x

σx

)
dx . (18)

Now inserting (17) into (15) expresses the autocorrelation
sequence of the quantization error by the normalized auto-
correlation sequence r(m) as

Rδδ(m) =
1

σ2
v

∞∑
n=0

b2n r
n(m), (19)

with
bn =

1

c

1√
2π n!

∑
κ∈Lx

an(κ) E(κQx) . (20)

Note that the coefficients an(κ) depend only on the assumed
Gaussian distribution and the index κ of the quantized value,
while the coefficients bn include the quantization error law
E(x) and the multiplier coefficient c.

Finally the normalized autocorrelation r(m) can be con-
verted into the autocorrelation sequence at the input by (9)

Rδδ(m) =

∞∑
n=0

b2n

σ
2(n+1)
v

Rnvv(m) . (21)

B. Power spectrum
The discrete-time Fourier transform turns the autocorrela-

tion sequence r(m) into the power spectrum S(ejΩ). The
square r2(m) turns into a frequency domain circular convolu-
tion of the power spectrum with itself and higher powers are
turned into multiple convolutions

Svv(e
jΩ) =

∞∑
m=−∞

Rvv(m)e−jmΩ , (22)

1

2π
Svv(e

jΩ) ∗ Svv(ejΩ) =
∞∑

m=−∞
R2
vv(m)e−jmΩ . (23)

Thus the power spectrum of the quantization error Sδδ(ejΩ)
can be expressed by the power spectrum of the multiplier input
Svv(e

jΩ) (the symbol
n∗ denotes n-fold circular convolution)

Sδδ(e
jΩ) =

b20
σ2
v

δ(Ω) +
b21
σ4
v

Svv(e
jΩ)+

+
∞∑
n=2

b2n

σ
2(n+1)
v

1

(2π)n−1
Svv(e

jΩ)
n−1∗ Svv(e

jΩ) . (24)

The power spectrum Sδδ(e
jΩ) consists of

• a DC-term representing a bias in the quantized signal,
• a term which corresponds to the power spectrum Svv(e

jΩ),
• all further terms with multiple convolutions of the input

power spectrum.
The relative weighting of these different contributions is

determined by the properties of the quantization law.

Fig. 4. Power spectrum of the quantization error as described in Sec. VII.
Solid line: Analytical result from the series (24). Wiggly line: Measurement
by simulation of the system from Fig. 2

VII. NUMERICAL RESULTS

As an example consider a white Gaussian noise signal with
variance σ = 0.25 filtered through a discrete-time system with
transfer function

F (z) =
a(z − 1)

(z − z∞)(z − z∗∞)
, with z∞ = 0.95 ej0.3π,

(25)
such that the power spectrum at the multiplier input is

Svv(e
jΩ) = |F (ejΩ)|2 . (26)

The pre-filter F (z) is scaled by a parameter a in (25) such
that σv = σ = 0.25. Quantizing the pre-filter ouput to a
wordlength wv gives the signal v(k). The discrete-time vari-
ables are represented by sign and magnitude with wordlength
wv = wc = wy = 8 bit. The exact result of the multiplication
x(k) = c v(k) with c = 63Qc = 63/128 is truncated to y(k)
with wordlength wy .

The power spectrum Sδδ(e
jΩ) of the quantization error was

• calculated analytically with (24),
• measured by the method from [2, Sec. 5.5.5] [20]

(N = 512 samples of the spectrum, length of the test
signal 2N , average over L = 1024 measurements).

Both results are shown in Fig. 4 where the power spectrum
Sδδ(e

jΩ) is scaled by Q2
y/12. It is obvious that the power

spectrum of the quantization error is stronlgy determined by
the spectral shape of the multiplier input. The peak at Ω =
0.3π is directly related to the poles of the filter F (z). A third
harmonic appears at Ω = 0.9π caused by the nonlinearity of
the quantization.

The measured power spectrum is well approximated by the
series representation (24). Due to the form of the quantization
error law in this case, only odd values n appear in the series.
The spectral shape is determined by the term with n = 1
and further by the convolution terms n = 3, 5, . . . , 13. Further
terms for n > 13 are flattened by the repeated convolutions
and can be well approximated by a white spectrum. This
flattening effect has already been described in [18].
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VIII. CONCLUSION

The noise power spectrum of the quantization error at
the output of a finite-wordlength digital multiplier has been
investigated. No assumptions on the properties of the noise
power spectrum were made. Instead, the power spectrum
at the output has been derived from the assumed proper-
ties of the signal power spectrum at the multiplier input.
The mathematical analysis is based on an expansion of the
Gaussian distribution into Hermite polynomials. The obtained
analytical result compares favourably with measurements at a
simulated finite-wordlength multiplier. The presented results
provide a building block for the analysis of finite-wordlength
implementations of digital filters and digital controllers.

APPENDIX

Mehler’s formula is a series expansion of a two-dimensional
Gaussian function into the product of Hermite polynomi-
als [16]. It is frequently quoted [15], [17], [18], [21]–[23] but
the appearance of Mehler’s formula varies, because different
definitions and notations of the Hermite polynomials exist
[22]. Since proofs are hard to find in the technical literature, a
derivation of Mehler’s formula is given here. It is based on an
approach from the original paper [16] and uses results of [24].

A random variable with standard normal distribution has the
probability density function N (x|0, 1) and the characteristic
function Φx(ω) = exp(− 1

2ω
2) [24, Table 5.2]

N (x|0, 1) =
1√
2π
e−

x2

2 =
1

2π

∞∫
−∞

Φx(ω)e−jωx dω , (27)

such that the exponential in N (x|0, 1) can be expressed as

e−
x2

2 =
1√
2π

∞∫
−∞

e−(ω
2

2 +jωx) dω . (28)

Now consider the Hermite polynomials e.g. from [24, Sec. 7.4]

Hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 . (29)

With (28) and repeated differentiation inside the integral
follows

e−
x2

2 Hn(x) =
1√
2π
jn

∞∫
−∞

ωne−(ω
2

2 +jωx) dω . (30)

The joint normal density function N2(x1, x2|0,R) from (16)
has the joint characteristic function [24, Sec. 6.5]

Φx1x2(ω1, ω2) = exp
(
− 1

2 (ω2
1 + ω2

2 + 2rω1ω2)
)

(31)

= exp
(
− 1

2 (ω2
1 + ω2

2)
) ∞∑
n=0

(−1)n

n!
rnωn1ω

n
2 ,

such that it can be expressed as

N2(x1, x2) =
1

4π2

∞∫∫
−∞

Φx1x2
(ω1, ω2)e−j(ω1x1+ω2x2) dω1dω2 .

Inserting Φx1x2
(ω1, ω2) in the form of (31), interchanging

summation and integration and replacing each integral by (30)
for (x1, ω1) and for (x2, ω2) gives (16) for σx = 1.
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