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Abstract—In this paper, we formulate a variant of the Support
Vector Machine classifier that exploits graph-based discrimina-
tion criteria within a multi-class optimization process. We employ
two kNN graphs in order to describe intra-class and between-
class data relationships. These graph structures are combined in
order to form a regularizer which is used in order to regularize
the multi-class SVM optimization problem. The derived multi-
class classifier is compared with the standard SVM classifier
and SVM formulations exploiting geometric class information
on six publicly available databases designed for human action
recognition in the wild and facial image classification problems,
where its effectiveness is shown.

I. INTRODUCTION

Support Vector Machine (SVM) [1] is a binary classifier that
determines a decision function discriminating two classes with
maximal margin. It has been employed in many classification
problems due to its good generalization power and its ability
to determine a global optimal solution, since it is formulated
as a quadratic convex optimization problem. Moreover, non-
linear decision functions can be detemrined by exploiting the
well-known kernel trick. In order to determine multiple deci-
sion functions, binary SVMs are usually combined following
the One-Versus-Rest (OVR) or the One-Versus-One (OVO)
schemes. This means that for a K-class classification problem,
multiple (K for OVR and K(K−1)

2 for OVO schemes) binary
SVMs are independently trained, each of which determines
a binary decision function during the training phase. In the
test phase, samples are introduced to all binary SVMs and
the classifiers’ outputs are combined in order to obtain the
final classification result [2]. In order to exploit the inter-
relationships that may appear between multiple classes, SVM
variants that solve a joint optimization problem determining
K decision functions (one per class in an OVR manner) have
been proposed [3].

In standard binary and multi-class SVM methods, the
obtained decision functions are determined to be the ones
providing the maximal margin between the classes to be
discriminated. Such an approach, while being very effective,
disregards geometric properties of the classes forming the
classification problem to be solved. It has been shown that the
exploitation of class geometric properties within the maximum
margin-based classification framework can lead to increased
classification performance. Specifically, it has been shown that
the exploitation of the intra-class variance within the binary
SVM formulation can lead in enhanced performance [4], [5],
[6]. In addition, it has been shown that the exploitation of

intrinsic graph structures defined under the Graph Embedding
framework [10] further enhances the performance of the
resulting classifier [7]. For the multi-class SVM formulation,
the intra-class variance has also been exploited in [8], [9].

All the above approaches combine intrinsic class geometric
properties (i.e. properties to be minimized) with the maximum
margin property of SVMs in order to enhance its general-
ization performance. As has been explained in [7], [9], this
process is equivalent to a two-step process where the training
data are first mapped to a new feature space in which the
adopted intrinsic class geometric property is minimized. In that
space, the standard SVM classifier is subsequently applied. A
question that arises from observing this two-step process is
whether the exploitation of discrimination criteria formulated
using both intrinsic (to be minimized) and penalty (to be
maximized) geometric properties of the classes forming the
classification problem would further increase the generaliza-
tion ability of the classifier.

In this paper, we first formulate an optimization problem for
SVM-based multi-class classification that exploits a regularizer
combining both intrinsic and penalty geometric properties
of the classes forming the classification problem at hand.
We design this regularizer to be in line with the Graph
Embedding framework [10], which has been widely exploited
in Discriminant Analysis-based subspace learning. That is, we
define an intrinsic graph expressing properties of the data that
are subject to minimization and a penalty graph expressing
properties of the data that are subject to maximization. We
combine these two graph structures and incorporate them
in the multi-class SVM formulation of [3]. We apply the
proposed method in human action recognition and facial image
classification problems, where we compare its performance
with both standard SVM and SVM formulations exploiting
intrinsic class geometric properties.

II. RELATED WORK

Let us denote by {xi, li}, i = 1, . . . , N a set of D-
dimensional vectors xi and the corresponding class labels
li ∈ {1, . . . ,K}. We would like to train a multi-class clas-
sification scheme that is able to classify a test vector xt ∈ RD

to one of the K classes.

A. Binary SVM classifier

In order to exploit binary SVMs for multi-class classifica-
tion we define binary labels yi ∈ {−1, 1} denoting whether the
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vectors xi belong to the positive or negative class of the binary
classification problem at hand. In SVM, the optimal decision
function is obtained by solving the following optimization
problem:

min
w,b

1

2
wTw + c

N∑
i=1

ξi, (1)

s.t. : yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N, (2)

where w ∈ RD defines the decision hyperplane, b is the offset
of the hyperplane from the origin, ξi, i = 1, . . . , N are the so-
called slack variables and c > 0 is a regularization parameter.
The solution of the above-described optimization problem is
a quadratic optimization problem of the form:

max
α

1Tα− (α ◦ y)TK(α ◦ y) (3)

subject to 0 ≤ αi ≤ c, i = 1, . . . , N . α ∈ RN is a vector
containing the Lagrange multipliers αi, i = 1, . . . , N , y ∈ RN

is a vector containing the binary labels yi, i = 1, . . . , N
and ◦ denotes the Hadamard (element-wise) product operator..
K ∈ RN×N is the so-called kernel matrix. For linear decision
functions [K]ij = xT

i xj , while for nonlinear decision func-
tions nonlinear kernel functions (like the RBF) are employed.

B. Multi-class SVM classifier

In order to define K hyperplanes described by the vectors
wk, k = 1, . . . ,K the following optimization problem was
proposed in [3]:

min
wk,bk

K∑
k=1

1

2
wT

k wk + c
N∑
i=1

∑
k ̸=li

ξki , (4)

wT
lixi+bli ≥ wT

k xi+bk+2−ξki , ξ
k
i ≥ 0, i = 1, . . . , N, k ̸= li,

(5)
which is equivalent to the following quadratic problem:

max
αk

K,N,N∑
k,i,j=1

(
αk
i α

li
j − 1

2
αk
i α

k
j − 1

2
αiαjc

li
j

)
xT
i xj+2

K,N∑
k,i=1

αk
i ,

(6)

s.t. :
N∑
i=1

αk
i =

N∑
i=1

cki αi, k = 1, . . . ,K, (7)

0 ≤ αk
i ≤ c, αli

i = 0, i = 1, . . . , N, k ̸= li. (8)

In the above, αk
i , i = 1, . . . , N, k = 1, . . . ,K are the Lagrange

multipliers and cki , αi are variables defined as:

αi =
K∑

k=1

αk
i , cki = 1, if li = k and cki = 0, if li ̸= k. (9)

The kernel trick can also be exploited in order to define non-
linear decision functions for multi-class classification.

C. Graph Embedding
The Graph Embedding [10] assumes that the training

data xi, i = 1, . . . , N form an undirected weighted graph
G = {X,V}, where X = [x1, . . . ,xN ] and V ∈ RN×N

is a similarity matrix whose elements denote the relation-
ships between the graph vertices xi. Furthermore, a penalty
graph Gp = {X,Vp} can be defined, whose weight matrix
Vp ∈ RN×N penalizes specific relationships between the
graph vertices xi. For example, the graph weights used in
Marginal Discriminant Analysis [10] are defined by:

Vij =

 1, li = lj and xj ∈ Ni,
1, li = lj and xi ∈ Nj ,
0, otherwise,

(10)

V p
ij =

 1, li ̸= lj and xj ∈ Ni,
1, li ̸= lj and xi ∈ Nj ,
0, otherwise.

(11)

Ni denotes the neighborhood of sample xi.
Data xi ∈ RD are projected to a low-dimensional feature

space Rd, d < D, by applying a linear transformation
optimizing the following criterion:

W∗ = argmin
tr(WTXLpXTW)=c

tr
(
WTXLXTW

)
, (12)

where tr(·) is the trace operator and L ∈ RN×N is the
so-called graph Laplacian matrix defined as L = D − V,
where D is the diagonal degree matrix having elements
Dii =

∑N
j=1 Vij . Lp ∈ RN×N is the graph Laplacian matrix

of Gp, that is Lp = Dp −Vp.
The columns of the transformation matrix W are formed

by the eigenvectors of the matrix S =
(
XLpX

T
)−1 (

XLXT
)

corresponding to the d minimal eigenvalues λi.

D. SVM classifiers exploiting intrinsic graphs
In order to exploit intrinsic graph structures in binary SVM-

based classification, the following optimization problem was
proposed in [7]:

min
w,b

1

2
wT S̃iw + c

N∑
i=1

ξi, (13)

yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N, (14)

where S̃i ∈ RD×D is a matrix describing the properties
of the training data that are subject to minimization and is
defined as S̃i = I + λXLXT . L is the Laplacian matrix
of the intrinsic graph defined under the Graph Embedding
framework [10] and λ > 0 is a regularization parameter. It
should be noted here that the optimization problem in (13) is
a generalization of the optimization problems proposed in [4],
[5], where only the within-class scatter of the training data
Sw =

∑K
k=1

∑
i,li=k(xi −mk)(xi −mk)

T is considered.
For multi-class classification, the following optimization

problem was proposed in [8], [9]:

min
wk,bk

K∑
k=1

1

2
wT

k Swwk + c

N∑
i=1

∑
k ̸=li

ξki , (15)
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wT
lixi+bli ≥ wT

k xi+bk+2−ξki , ξ
k
i ≥ 0, i = 1, . . . , N, k ̸= li.

(16)
For the extension of the multi-class optimization problem
(15) to non-linear decision functions, two-step processes were
proposed. Specifically, in [8], the training data xi are projected
to x̃i by using x̃i = S

− 1
2

w xi and the nonlinear version of
standard multi-class SVM (4) is subsequently solved by using
x̃i. In [9], the training data xi are non-linearly mapped to
the feature space determined by applying kernel PCA, and
subsequently the linear optimization problem (15) is solved in
that space.

III. PROPOSED METHOD

In order to exploit intra-class and between-class informa-
tion encoded in kNN graphs (10) and (11) within a multi-
class SVM formulation, we solve the following optimization
problem:

min
wk,bk

K∑
k=1

1

2
wT

k wk + c
N∑
i=1

∑
k ̸=li

ξki +
K∑

k=1

λ

2
wT

k Swk (17)

subject to the constraints:

wT
lixi+bli ≥ wT

k xi+bk+2−ξki , ξ
k
i ≥ 0, i = 1, . . . , N, k ̸= li.

(18)
In (17), S is a matrix expressing a combination of intrinsic
and penalty training data relationships, as described in Section
II-C, i.e. S =

(
XLpX

T
)−1 (

XLXT
)
. The equivalent dual

optimization problem to (17) subject to the constraints in (18),
is the following:

D =
1

2

K∑
k=1

wT
k (I+ λS)wk + c

N∑
i=1

∑
k ̸=li

ξki −
K∑

k=1

N∑
i=1

βk
i ξ

k
i

−
K∑

k=1

N∑
i=1

αk
i

[
(wli −wk)

Txi + bli − bk − 2 + ξki
]
(19)

with the constraints:

αk
i ≥ 0, βk

i ≥ 0, ξki ≥ 0, i = 1, . . . , N, k ̸= li. (20)

By determining the saddle points of D with respect to wk, bk
and ξki , we obtain:

∇D|w∗
k

= 0 ⇒ wk = (I+ λS)−1
N∑
i=1

(αic
k
i − αk

i )xi,(21)

∇D|b∗k = 0 ⇒
N∑
i=1

αk
i −

N∑
i=1

αic
k
i = 0, (22)

∇D|xk ∗
i

= 0 ⇒ c = αk
i + βk

i , (23)

with the constraints 0 ≤ αk
i ≤ c. Substituting (21), (22) and

(23) in (19), we obtain:

D =

K∑
k=1

N∑
i=1

N∑
j=1

qkijx
T
i (I+ λS)−1xj + 2

K∑
k=1

N∑
i=1

αk
i , (24)

qkij =

(
αk
i α

li
j − 1

2
αk
i α

k
j − 1

2
αiαjc

li
j

)
, (25)

with the constraints:
N∑
i=1

αk
i =

N∑
i=1

cki αi, k = 1, . . . ,K, (26)

0 ≤ αk
i ≤ c, αli

i = 0, i = 1, . . . , N, k ̸= li, (27)

which is a quadratic optimization problem in terms of α.
In order to obtain non-linear decision functions, we assume

that there is a non-linear function ϕ(·) : xi ∈ RD → ϕ(xi) ∈
F mapping the data from the input space to the kernel space.
Let us denote by Φ = [ϕ(x1, . . . , ϕ(xN ] ∈ R|F|×N a matrix
containing the training data representations in F . The kernel
matrix can be defined as K = ΦTΦ. Based on the Representer
Theorem, we can express the decision functions as linear
combinations of Φ, i.e.:

wk =
N∑
i=1

γk
i ϕ(xi) = Φγk, k = 1, . . . ,K, (28)

where γk ∈ RN is a vector containing the reconstruction
weights of wk with respect to ϕ(xi), i = 1, . . . , N . The matrix
S ∈ R|F|×|F| can be expressed as follows:

S = S̃−1
p Si = (ΦLpΦ

T + rI)−1(ΦLΦT )

=
1

r
ΦLΦT − 1

r2
Φ(L−1

p +
1

r
K)−1KLΦT (29)

The equivalent to (17) subject to the constraints in (18) dual
optimization problem can now be expressed as follows:

D =
1

2

K∑
k=1

γT
kΘγk + c

N∑
i=1

∑
k ̸=li

ξki −
K∑

k=1

N∑
i=1

βk
i ξ

k
i

−
K∑

k=1

N∑
i=1

αk
i

[
(γli − γk)

Tki + bli − bk − 2 + ξki
]
, (30)

with the constraints:

αk
i ≥ 0, βk

i ≥ 0, ξki ≥ 0, i = 1, . . . , N, k ̸= li. (31)

In (30), Θ = K + λ
rKLK − λ

r2K(L−1
p + 1

rK)−1KLK
and ki ∈ RN is a vector containing the values ki,j =
ϕ(xj)

Tϕ(xi).
By determining the saddle points of D with respect to γk,

bk and ξki , we obtain:

∇D|γ∗
k

= 0 ⇒ γk = Θ−1
N∑
i=1

(αic
k
i − αk

i )ki, (32)

∇D|b∗k = 0 ⇒
N∑
i=1

αk
i −

N∑
i=1

αic
k
i = 0, (33)

∇D|xk ∗
i

= 0 ⇒ c = αk
i + βk

i , (34)

with the constraints 0 ≤ αk
i ≤ c.

Substituting (32), (33) and (34) in (30), we obtain:

D =

K∑
k=1

N∑
i=1

N∑
j=1

qkijk
T
i (Θ

−1)Tkj + 2

K∑
k=1

N∑
i=1

αk
i , (35)
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Fig. 1. (Top) Video frames from Hollywood2, Olympic sports and Hollywood 3D action datasets. Bottom Facial images from the JAFFE and ORLS datasets

qkij =

(
αk
i α

li
j − 1

2
αk
i α

k
j − 1

2
αiαjc

li
j

)
, (36)

with the constraints:
N∑
i=1

αk
i =

N∑
i=1

cki αi, k = 1, . . . ,K, (37)

0 ≤ αk
i ≤ c, αli

i = 0, i = 1, . . . , N, k ̸= li, (38)

which is a quadratic optimization problem in terms of α.
By comparing (35) and (6), we can observe that, as in the

linear case, the two optimization problems are similar. Specif-
ically, the solution of (35) is equivalent to the solution of (6),
by exploiting the modified kernel matrix K̃ = K(Θ−1)TK =(
[I+ λ

rKL− λ
r2K(L−1

p + 1
rK)−1KL]−1

)T
K.

IV. EXPERIMENTS

We evaluated the performance of the proposed classifier
in human action recognition and facial image classification
problems. In human action recognition, we employed three
benchmark datasets, i.e. the Hollywood2 [11], the Olympic
sports [12] and the recently introduced Hollywood 3D [13]
datasets. For facial image classification we employed the
JAFFE [14] and ORL [15] datasets. Example action video
frames and facial images from all datasets are illustrated in
Figure 1. In all our experiments we compare the performance
of the proposed method with that of SVM, MCVSVM [5], [9]
and Graph Embedded SVM using (10) [7].

In our first set of experiments, we applied the competing
methods on human action recognition. We used the state-of-
the-art video representation proposed in [16] that describes a
video by using HOG, HOF, MBHx, MBHy and (normalized)
Trajectory descriptors evaluated on the trajectories of densely
sampled interest points. After descriptor calculation, the video
is represented by V = 5 Bag-of-Words (BoW)-based represen-
tations, i.e. one BoW-based representation per descriptor type.
We follow [16] and use 4000 codewords for each BoW repre-
sentation. Classification is performed by employing the RBF-
χ2 kernel which has been found to outperform other choices
for BoW-based representations [18]. Different descriptor types
are combined by following a multi-channel approach [17]. In

TABLE I
PERFORMANCE (MAP) IN HUMAN ACTION RECOGNITION.

Hollywood2 Olympic sports Hollywood 3D
SVM 61.41% 82.77% 29.45%
Method [9] 65.98% 84.94% 30.31%
Method [5] 65.74% 84.86% 30.29%
Method [7] 66.06% 84.96% 31.11%
Proposed method 67.48% 87.82% 33.13%

all our experiments we have used 5-NN graphs. In all action
recognition datasets, performance is evaluated by computing
the average precision (AP) for each action class and reporting
the mean AP over all classes (mAP). This is due to the fact
that a video may depict more than one actions.

The performance achieved by the competing methods is
illustrated in Table I. The proposed method exploiting both
intrinsic and penalty kNN graphs achieves higher performance
when compared to standard SVM and SVM methods exploit-
ing only intrinsic class geometric information. In Table II,
we also compare the performance obtained by applying the
proposed classifiers on the BoW-based video representation
exploiting the Improved Dense Trajectory-based video descrip-
tion with that of some recently proposed action recognition
methods. As can be seen, this video description and classifier
combination provides very good performance, which is com-
parable with other (state-of-the-art) approaches. It is worth
noting here that most of the methods listed in Table II employ
standard (binary) SVM classification. Thus, we expect that
the application of the proposed classifiers would enhance their
performance.

In our second set of experiments we have applied multi-class
classification in two facial image datasets, i.e. the JAFFE and
ORL datasets. We have applied the five-fold cross validation
by taking into account the labels of the data. That is, each
fold is formed by 20% of the facial images of each class.
In each cross-validation round, one fold is used as test set,
while the remaining folds form the training set. Five cross-
validation rounds are conducted, one per each test fold index.
The classification accuracy of each classifier is subsequently
measured for that experiment. We perform five experiments
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TABLE II
COMPARISON OF OUR RESULTS WITH SOME STATE-OF-THE-ART METHODS

ON THE HOLLYWOOD2, OLYMPIC SPORTS AND HOLLYWOOD 3D
DATASETS.

Hollywood2 Olympic sports Hollywood 3D
Method [19] - - 28.7%
Method [20] - - 29.28%
Method [21] - - 30.52%
Method [21] - - 30.52%
Method [22] - - 36.9%
Method [23] 45.8% - -
Method [24] 59.5% 80.6% -
Method [25] 62.5% 85.49% -
Method [26] - 85.5% -
Method [27] 63.3% 89% -
Method [28] 61.69% 88.89% -
Method [29] 62.5% 89.74% 31.79%
Method [16] - BoWs 62.2% 83.3% -
Method [16] - FVs 64.3% 91.1% -
Proposed method 67.5% 87.82% 33.13%

TABLE III
PERFORMANCE (CR) IN FACIAL IMAGE CLASSIFICATION PROBLEMS.

JAFFE ORL
SVM 82.38% 92.25%
Method [9] 84.29% 94.5%
Method [5] 82.38% 94.5%
Method [7] 84.29% 94.25%
Proposed method 87.62% 98.25%

for each database and calculate the mean classification rate in
order to measure the performance of the various classifiers. We
apply non-linear classification using the RBF kernel function.
The performance of the competing methods is illustrated in
Table III. Compared to the standard SVM and SVM meth-
ods exploiting only geometric data relationships described in
intrinsic graphs, the proposed method exploiting combined
information appearing in both intrinsic and penalty graphs
provides higher performance.

V. CONCLUSIONS

In this paper, we described a graph-regularized multi-class
SVM classifier exploiting kNN graphs encoding intra-class
and between-class data relationships. We have provided direct
solutions for the optimization problem solved in both linear
and non-linear cases and compared the performance of the pro-
posed classifier with related classification methods in human
action recognition and facial image classification problems,
where it outperformed relating classification approaches.
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