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Abstract—Light field imaging is recently made available to
the mass market by Lytro and Raytrix commercial cameras.
Thanks to a grid of microlenses put in front of the sensor, a
plenoptic camera simultaneously captures several images of the
scene under different viewing angles, providing an enormous
advantage for post-capture applications, e.g., depth estimation
and image refocusing. In this paper, we propose a fast framework
to re-grid, denoise and up-sample the data of any plenoptic
camera. The proposed method relies on the prior sub-pixel
estimation of micro-images centers and of inter-views disparities.
Both objective and subjective experiments show the improved
quality of our results in terms of preserving high frequencies
and reducing noise and artifacts in low frequency content. Since
the recovery of the pixels is independent of one another, the
algorithm is highly parallelizable on GPU.

I. INTRODUCTION

Light field imaging by plenoptic cameras is gaining a lot

of popularity in the field of computational photography due to

the rich and costless capture of angular and spatial information

of the scene, made possible thanks to a microlens array placed

between the main lens and the sensor. As a result, such

cameras have novel post-capture processing capabilities (e.g.,

depth estimation [1]–[3], superresolution [1], [2], refocusing

[4], and light field editing [5]).

A very first step in the pipeline of light field image pro-

cessing called the view demultiplexing converts the 2D raw

image to the 4D light field addressing the spatial and angular

coordinates of the sampled signal. The demultiplexing process

consists in estimating the origin of the angular coordinate

system in the image of each microlens, i.e., the µ-image center,

and then reorganizing the raw data in a way that all pixels

capturing the light rays with a certain angle of incidence are

stored in the same image, creating the sub-aperture views.

These demultiplexed images form the matrix of views. In

practice, due to translational and rotational offsets between

the microlens grid and the sensor, the µ-image centers are

estimated as non-integer sensor coordinates. To obtain the

matrix of views, the state of art algorithms either round the

estimations, which introduces aliasing or re-sample the µ-

images in the raw data, which mixes the angular information

and creates view cross-talk.

The problem of light field denoising is separately addressed

by [6] through filtering in the frequency domain, targeting low-

light imagery. Their proposed hyperfan filter with the Gaussian

roll-off effectively removes the noise, at the cost of increasing

the blur or ringing artifacts in the light field. In [7], gray-scale

light fields degraded by additive noise are denoised using the

estimated disparities. In [8], Poisson noise of camera array data

is circumvented employing the principal component analysis

and tensor analysis of image patches found through disparities.

None of the mentioned denoising works however handle the

sub-pixel sampling of the signal correctly.

In this paper, we propose to exploit both the sub-pixel

estimation of the µ-image centers and the sub-pixel estimation

of disparities to spatially re-gridi , denoise and up-sample the

views. This allows us to address correctly the spatial sampling

of the signal and thus to reduce the aliasing in the matrix of

views.

II. DISPARITY-GUIDED VIEW RECOVERY

The inputs of the proposed view recovery framework are

the initial demultiplexed matrix of views obtained from de-

mosaicked raw data, the sub-pixel misalignment of the µ-

image centers, and the pixel correspondences on the views (for

example from disparity estimation). Let I i be a demultiplexed

view containing N non-negative real-valued intensities in

3 color channels and positioned in the angular coordinate

i = (i1, i2) ∈ Z
2 of the matrix of views. We will denote

I i(x, c) the intensity of this view at the 2D pixel-coordinate

x ∈ N
2 in color channel c. For a second view Iu, let

a
i,u = a (i − u) ∈ Z

2 be its baseline to the first one (a
is constant), and let di(x) ∈ R

2 denote the disparity of pixel

x in view i . The 2D coordinates of the corresponding pixel

in view u read x
′ = ⌊x+ a

i,u ⊙d
i(x)⌋, ⊙ denoting element-

wise multiplication and ⌊.⌋ denoting the rounding function.

Our aim is to recover a better estimation of the intensity at

pixel x in view i using the intensities of its correspondents in

all views.

The sub-pixel misalignment of each µ-image center is

inherited by all of the pixels that are demultiplexed from that

µ-image into the different views. Besides, accurate estimations

of disparities have most probably sub-pixel accuracy, due to

the intended aliasing in the light field sampling introduced by

manufacturing [3], [4]. To correctly import the corresponding

pixels from the other views within each pixel of a target view,

we convolve the imported samples with a triangle filter to

approximate the ideal anti-aliasing sinc filter.

The 2D misalignment for x is defined as follows:

ǫ(x) :=

{
ǫ
m if I i(x, c) ∈ R,

0 otherwise
(1)

iRe-gridding in this context corresponds to the resampling of the non-
regularly sampled data into a regular and integer grid of pixel coordinates.
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Fig. 1. An example of pixel reordering from the demosaicked raw image

to extract two different raw views [9]. Pixels with the same relative position
(same angular information) w.r.t. the µ-image centers are assembled in the
same view. In general, the number of recovered views is equal to the number of
pixels per microlens but only two views are illustrated here for visualization.
Color is only shown for illustrative purposes and corresponds to sensor color
on original Bayer pattern. The origin of the angular coordinate system on
each µ-image is represented by crossing arrows.

where m identifies the µ-image used to demultiplex x to

I i, and ǫ
m ∈ R

2 denotes the corresponding sub-pixel mis-

alignement of the µ-image center (see Fig. 1). The second

condition in Eq. 1 addresses the pixels that do not contain

chromatic information, e.g., the empty pixels that are intro-

duced during the demultiplexing step in [9]. The proximity

promoting weight wi,u(x,x′) is then defined for pixel x and

its corresponding pixel x′ in Iu, as follows:

wi,u(x,x′) = 1−‖ǫ(x′)+a
i,u⊙d

i(x)−⌊ai,u⊙d
i(x)⌋‖2

(2)

These weights are normalized over all of the corresponding

pixels x
′′ on all views u

′ that are contributing to the recovery

of x:

ŵi,u(x,x′) =
Γu(x′)wi,u(x,x′)∑

u
′

Γu′(x′′)wi,u′(x,x′′)
· (3)

where Γu(x′) ∈ {0, 1} is equal to 1 only if x
′ contains

chromatic information. Besides, note that for i = u, we have

x
′ = x and wi,i(x,x) = 1 − ‖ǫ(x)‖2. Then, the recovered

color information from all of the views are obtained as follows:

Ĩ i(x, c) =
∑

u

ŵi,u(x,x′)Iu(x′, c). (4)

Finally, if the difference in vertical and horizontal sampling

is not corrected in the initially demultiplexed views (e.g.,

[9]), our view recovery method performs an additional up-

sampling step on the denoised/re-gridded views provided by

(4). Particularly, the intensity of pixel x
′ in Ĩu is used to

recover the intensity at pixel x in a new, up-sampled view Ĭ i,
where x = ⌊k ⊙

[
x
′ + a

u,i ⊙ d
u(x′)

]
⌋. In this formulation

k ∈ R
2 denotes the horizontal and vertical sampling rates,

e.g., k = (
√
3, 1) in [9] taking into account the quinqunx

arrangement of the microlenses in Lytro. Eqs. 2–4 are then

used to recover Ĭ i accordingly, with all the mis-alignements

ǫ(x), ǫ(x′) replaced by 0, since Ĩ i is already resampled into

an integer-coordinate grid.

It shall be noted that linear demosaicking of raw data (that

is performed before demultiplexing) changes the statistics of

the captured noise. Indeed, demosaicking (i.e., averaging of

n neighboring chromatic values) asymptotically reduces the

noise. Now if for all u we have either

‖ai,u ⊙ d
i(x)‖∞ ≥ 1 (5)

i.e. the corresponding pixels are sampled in two different

micro-images in the raw data, or

‖ai,u‖∞ > n/2 (6)

i.e. the baseline between the views is bigger than half of

the demosaicking window’s width (e.g., n = 4 for bilinear

demosaicking of raw data), then these corresponding pixels are

obtained from two different neighborhoods on the raw data,

and therefore their noise values remain statistically indepen-

dent after the demosaicking step. The Central Limit theorem

therefore indicates that averaging the corresponding values

(here with disparity-guided view recovery) further reduces the

noise to normally distributed around 0, iff many of such pixels

are used. For the few other pixels where none of the above

conditions are satisfied, however, the corresponding pixels

come from the same raw data neighborhood, and therefore

the corresponding pixel noise values are not statistically inde-

pendent. In those cases, the noise is reduced by averaging the

values, but can not be guaranteed to converge to 0.

III. EXPERIMENTAL RESULTS

In this section, we perform both quantitative and qualitative

assessments of our view recovery framework. We use the

method of [9] for obtaining the disparities. We then demosaick

the raw data and demultiplex according to the method of [9].

We next proceed with our view recovery method first in a

Monte Carlo setup to assess the noise reduction performed by

our method.

Next, we compare our results with the relevant state-of-

art methods in view recovery of type 1.0 plenoptic cameras,

i.e., the image processing pipelines presented in [10], [11] and

[6]. The comparison is performed both employing an objective

non-reference image quality metric called “metric Q” [12], as

well as subjective inspection of the recovered views of the

scenes. The code and data of [10] are available on-line. The

authors of [11] kindly agreed to provide us with their code,

and the authors of [6] kindly agreed to run their code on our

data, to allow comparisons.

The computational costs of the proposed method is neg-

ligible compared to the costs of estimating disparities. In

particular, on a five-core Intel CPU exploiting multi-threading

with OpenMP [13], the disparity estimation in [9] takes 90

seconds in average per view of Lytro images. In return, the

presented denoising and up-sampling method takes a few

milliseconds per view on the same machine.

We encourage the reader to inspect the results on the pdf

version of this paper, rather than a hard copy.
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Fig. 2. Monte Carlo analysis of the proposed view recovery system. The
first row shows the standard deviation σ (Left) and the average (Right) of the
distance between the denoised output and the original light field (the distance
being calculated as the difference between the denoised and original signal
for the additive noise, and as the ratio of denoised to original signal for the
multiplicative noise). The results of additive Gaussian, additive Poisson and
multiplicative Speckle noise are plotted in blue, green and black, respectively.
In both plots the results of additive Gaussian and additive Poisson noise are
very similar to each other. The next two rows show the noisy input of the
lightfield 4 in Fig. 3, with maximum noise σin = 1, and the recovered view,
respectively. Additive Gaussian, additive Poisson and multiplicative Speckle
noise are shown from left to right.

A. Monte Carlo analysis of noise reduction performance

To quantify the noise reduction obtained by the proposed

method, we performed a set of Monte Carlo studies using

the demultiplexing and disparity estimation proposed in [9].

After estimating the disparities according to [9], three types

of noise were applied to the raw data of the light fields. The

noisy raw data was then demosaicked and demultiplexed. We

then proceeded to denoise, re-grid and up-sample the views as

proposed in Section II. The results of our denoising method

were compared to the originally demutiplexed light fields

without any applied noise. In particular, we used the estimated
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Fig. 3. Quantitative assessment with metric Q. First row: metric Q plotted
for 4 different light fields, for a central view (Left) and a peripheral view
Rright). Caption labels stand for CVPR13 [10], ICCV13 [11] and SPIE13 [6].
Next two rows provide thumbnails of the four light fields with marked regions
used in the other figures of this paper.

disparities obtained from the originally captured raw data to

separate the performance of the disparity estimation of [9]

from our proposed view recovery.

Noise categories were chosen as additive Gaussian noise,

additive Poisson noise, and multiplicative Speckle noise. For

each category, the standard deviation σ of the noise samples

was gradually changed between 0 and 1. The noise was applied

to normalized light field data (i.e., RGB image values in the

range of [0, 1]). Fifty noise samples per pixel were simulated

for each σ. In particular, for every σ, the additive Gaussian

noise was centered at 0 and the additive Poisson noise at

σ2. The multiplicative speckle noise was generated to have

uniform distribution between 1−
√
12σ

2
and 1 +

√
12σ

2
.

Fig. 2 shows some statistics on the distance between the

denoised output and the original signal as a function of

applied noise’s σ. This distance is designed to assess the

remaining noise in the denoised output. It is calculated as

the difference between the denoised and original signal for

additive noise, and as the ratio of denoised to original signal

for the multiplicative noise. Indeed, the proposed method

reduces the applied noise in all cases, having zero average

in both cases of additive Gaussian and Poisson noise. Note

that the expected average of the input Poisson noise grows

theoretically as the noise variance. Nevertheless, the average

of the remaining noise in our the views remains close to 0.

The effect of re-gridding is the most evident in the case of

multiplicative (Speckle) noise, where the average is close to
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Fig. 4. Qualitative comparisons on recovering central views: Close-ups
on the central views recovered by different methods at two different depths
from the third lightfield in Fig. 3. Note the additional sharpening on strong
edges in Lytro images, the loss of high frequency and noise presence for
[10], the noise magnification for [11] with images twice of our results in
resolution, and the loss of high frequency in [6]. In particular, none of the
state of art methods preserve the texture of the tablecloth. Difference in the
color appearance of the results come from different color correction methods
implemented by each toolbox.

0, but does not necessarily converge to 0. Finally, in presence

of low magnitudes of the applied noise, the level of the noise

in the original data, the effect of re-gridding on the views after

re-gridding/denoising, and/or possibly the in-accuracies of the

estimated disparities are revealed.

B. Non-reference assessment with metric Q

Due to the absence of ground truth for the captured light

fields, we calculate metric Q [12] on the output views of each

toolbox, to quantify the quality of the views recovered by each

method. In particular, we include the view rectification step in

[10], and the dictionary learning super-resolution step in [11]

to assess the full pipeline of each work. Metric Q is based

on the singular value decomposition of local gradients of the

image. In particular, the image is divided into non-overlapping

blocks of B×B pixels. For block b, the horizontal and vertical

intensity gradients are stacked in a B2×2 matrix. Denoting by

zb1 and zb2 the singular values of this matrix, the thresholded

coherence Rb of the block b is defined as:

Rb =

{
1 if

|zb

1
−zb

2
|

zb

1
+zb

2

≥ ϑ,

0 otherwise.
(7)

To consider only anisotropic blocks (i.e., the blocks for

which Rb = 1), metric Q is defined as

Q =
∑

b

Rbzb1
|zb1 − zb2|
zb1 + zb2

. (8)

It is shown in [12] that, although the value of metric Q
strongly depends on the content of the scene, it is conveniently

correlated with the level of noise, the sharpness and the

intensity contrast of the image. Notably, a bigger value of

this metric indicates a higher quality of the image, that is

lower noise, higher sharpness and better contrast. The two

parameters of this metric are the size B of the blocks and

the threshold ϑ on the coherence between the singular values.

We set these parameters similar to the ones proposed by the

authors, i.e., the block size B = 8 and the threshold in Eq. 7

ϑ = 0.02.

Fig. 3 shows plots of the metric Q values estimated for

four different light fields on the central and peripheral views.

As can be seen, our method and the denoising of [6] out-

perform the others in the central views, and our technique

out-performs all of the others, including [6] on the peripheral

views according to this non-reference image quality metric.

C. Subjective comparisons

We show in Figs. 4 and 5 close ups of the recovered central

and peripheral views for the different light-fields and the

different methods from Fig. 3. Note that subjective comparison

should be conducted while taking into account the different

spatial resolutions delivered by the different methods: The sub-

aperture views of [10] are 328 × 328 pixels, Lytro provides

all-in-focus images (the combination of all views) of size

1080×1080 pixels, our recovery method gives images of size

655 × 655 pixels, and the size of the sub-aperture views of

[11] depends on the estimated microlens rotation (978× 976
pixels for our light field camera).

In practice, our method does visually better than [6] (denois-

ing in frequency domain with a hyperfan filter) at preserving

the high frequency content and reducing the ringing artifacts

in the peripheral views (see Fig. 5). It also out-performs [10]
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(with their view rectification) and [11] (with their dictionary

learning step and images twice of ours in resolution) in noise

reduction in the homogeneous areas. Note the over exposure

of the bright areas in the Lytro image, which is caused by

the integration of the light over the corresponding µ-images.

Besides, none of the state-of-art methods preserve the texture

of the tablecloth in Fig. 4 as ours does.

IV. CONCLUSION

In this paper, we address the physical mis-alignments of the

optical elements that result in non-integer spatial and angular

sampling of the signal in a plenoptic camera. Particularly,

having the pixel correspondences obtained from disparity

estimation, multiple samples of the signal are exploited to

spatially re-grid the signal on the views and to reduce the

contaminating noise. Objective assessment of the algorithm

(through a Monte Carlo study and a non-reference image

quality metric) shows the improved quality of our results w.r.t.

the state of art in terms of noise reduction, image sharpness

and intensity contrast.

It should be noted that the sub-pixel misalignment of

the µ-image center corresponds to both spatial and angular

coordinates of the demultiplexd pixels. In this work, we only

exploit the spatial aspect of the sub-pixel accuracy of the

estimated µ-image centers. A more rigorous handling of both

spatial and angular aspects implied by the sub-pixel center

estimation is left to future work.

Also note that the proposed recovery method can be seen as

a variation of the Non-Local means (NL-means) denoising [14]

applied on light field data, where the blocks are found through

the correspondences provided by the estimated disparities.

While NL-means performs denoising within a single image,

our approach exploits multiple instances of the same scene

locality to perform denoising. The latter reduces the possible

introduction of intra-image correlation between pixels.

Finally, when light field imaging is used only to perform

scene refocussing [4], [15], our re-gridding, denoising and up-

sampling method can be adapted to proceed directly on the

targeted refocusing plane.
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